Trunnion mounted ball valve
Type XG/XM series, and

Seat supported ball valve
Type M and X series

Rev. 3.0

Safety Manual
Table of Contents

1 Introduction ............................................................................................................................................ 3

2 Structure of the M and X series ball valves ............................................................................................ 3
   2.1 Components and description of use ........................................................................................................ 3
   2.2 Permitted valve types .................................................................................................................................. 3
   2.3 Supplementary valve documentation ........................................................................................................ 3

3 Using M and X series ball valves in safety systems ........................................................................... 3
   3.1 Safety function ........................................................................................................................................ 3
   3.2 Environmental and application restrictions .............................................................................................. 3
   3.3 Useful lifetime ......................................................................................................................................... 4
   3.4 Connecting a M and X series ball valve to the safety system ................................................................. 4
   3.5 Random hardware integrity ..................................................................................................................... 4
   3.6 Systematic integrity .................................................................................................................................. 5
   3.7 Additional information ........................................................................................................................... 5

4 Installation ............................................................................................................................................. 5

5 Operation ................................................................................................................................................ 6
   5.1 Recommended proof test .......................................................................................................................... 6
   5.2 Recommended partial stroke test ........................................................................................................... 6
   5.3 Maintenance ........................................................................................................................................... 6

6 References .............................................................................................................................................. 7

Appendix 1. An example of reliability (PFD) calculation for complete final element ...................................... 7

Appendix 2. Equations to calculate PFD for 1oo1 and 1oo1D final elements .................................................. 8
1. **Introduction**

This safety manual provides the functional safety related information required to integrate and use trunnion mounted XM/XG series and seat supported series M and X ball valves in safety systems in compliance with IEC 61508/61511 standard. The safety manual shall be used together with Installation, Maintenance and Operating Instructions manual (IMO) of Metso M and X series ball valves.

Metso M and X series ball valves are quarter turn valves which are used in automated on/off and control process applications. In on/off service valve is either fully closed or open. M and X series ball valve are commonly part or automated on/off (block) valve assembly which consist of valve, actuator, accessories and linkage parts. Valve (body) part of the automated on/off valve assembly which is considered in this document. Actuator of the automated on/off valve assembly can be pneumatically, electrically or hydraulically powered. Accessory part of the automated on/off valve assembly may consist of partial stroke test device such as Neles ValvGuard or solenoid valves as well as additional instruments such as quick exhaust valve, booster and limit switch.

In safety applications automated on/off valve assembly is part of safety instrumented function (SIF) which purpose is to protect plant, environment and personnel against a hazard. In safety systems valve assembly is commonly called final element subsystem. The primary function of final element is to either isolate the process or release (blow down) energy for instance pressure from the vessel.

2. **Structure of the M and X series ball valves**

2.1 **Components and description of use**

See the IMO for the detailed technical description of the valve. See paragraph 1 “General” and paragraph 12 “Type code” in IMO..

2.2 **Permitted valve types**

The information in this manual pertaining to functional safety applies to all valve sizes and variants covered by the IMO.

2.3 **Supplementary valve documentation**

1. 1M70, 1X72, 1X78 ; Installation, Maintenance and Operating Instructions (IMO)
2. 1M120, 1M220, 1X22, 1X26, 1X27 ; Technical Bulletin

These are available from Metso or for download from www.metso.com/valves.

Note, that IMO is always shipped together with the product

3. **Using M and X series ball valves in safety systems**

3.1 **Safety function**

When de-energised, the complete valve assembly goes to its fail safe position. The safety position of the valve can be either fully closed or fully open. The safety action within the assembly is normally initiated by a solenoid valve or intelligent partial stroke device. This releases actuator power resulting in the valve reaching its safety position. Hence the safety function of bare shaft valve is a quarter turn action (full stroke) either to close the fluid flow through valve or open the fluid flow through valve.

3.2 **Environmental and application restrictions**

Ensure that the valve is selected and specified correctly for the application and that the process conditions and atmospheric conditions are taken into account. Environmental limits for which product is designed and general instructions for applications are given in the product IMO and technical bulletin. Please, contact Metso in case more details are needed.

The reliability values given in paragraph 3.5 assume the valve is selected correctly for the service and all the environmental and application restrictions are considered. If the valve is used outside of its application or environmental limits, or with incompatible materials, the reliability information shown in paragraph 3.5 is not valid.
3.3 Useful lifetime
The useful lifetime needed for reliability estimations is typically 10 – 15 years for Neles M and X series valves, if Proof test (5.1), Partial Stroke test (5.2), Maintenance (5.3), have been considered accordingly. The “useful lifetime” is the time period after burn-in and before wear-out, when the failure rate of a simple item is more or less constant. Note that the design life of the valve is higher and should not be mixed to useful lifetime used in reliability evaluations.

3.4 Connecting a M and X series ball valve to the safety system
The complete final element (valve-actuator-accessories assembly) is connected to the safety system through an electrical connection which commonly operates intelligent partial stroke device or solenoid valve (see Fig 1).

A single final element installation provides hardware tolerance (HFT) equal to 0. In case HFT equal to one is required then two final elements installed in series or parallel must be used depending on the safety position.

Note, that the single final element may contain internal redundancy in the accessories part in some cases required e.g. 1oo2 solenoid valves are required.

Note, that the bare shaft valve cannot be connected to the safety system directly.

![Figure1](image)

Figure1. Schematic picture of safety loop. Final element is connected to safety (SIS) logic solver via solenoid or safety valve controller (partial stroke device). This shows single channel final element subsystem with voting 1oo1D or 1oo1.

3.5 Random hardware integrity
The table below shows the information to be used in reliability calculations for M and X series valves. The data represent the bare shaft valve which is one part of the final element.

All the other safety related components of the final element should be included when reliability of the final element subsystem is estimated. The analysis must also account for the hardware fault tolerance and architecture constraints for the complete final element subsystem.

An example calculation of an average probability of failure on demand (PFD) is shown in Appendix 1.
### Table 1  Failure rate data with automatic partial stroke test.

<table>
<thead>
<tr>
<th>Architecture type</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic coverage, DC [%]*</td>
<td>DC [%]</td>
</tr>
<tr>
<td>Safe Failure Fraction</td>
<td>SFF</td>
</tr>
<tr>
<td>Dangerous failures</td>
<td>( \lambda_d ) [failures / hour]</td>
</tr>
<tr>
<td>Dangerous undetected failures*</td>
<td>( \lambda_{DU} ) [failures / hour]</td>
</tr>
<tr>
<td>Dangerous detected failures, PST*</td>
<td>( \lambda_{DD} ) [failures / hour]</td>
</tr>
<tr>
<td>Safe failures</td>
<td>( \lambda_s ) [failures / hour]</td>
</tr>
</tbody>
</table>

* Diagnostic coverage represent common valve – actuator -assembly equipped with intelligent part stroke device such as Neles ValvGuard. The DC value have been used to calculate \( \lambda_{DU} \) and \( \lambda_{DD} \).

** Safe failure fraction must be assessed for complete final element assembly.

### Table 2  Failure rate data without partial stroke test.

<table>
<thead>
<tr>
<th>Architecture type</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic coverage, DC [%]</td>
<td>DC [%]</td>
</tr>
<tr>
<td>Safe Failure Fraction</td>
<td>SFF</td>
</tr>
<tr>
<td>Dangerous failures</td>
<td>( \lambda_d ) [failures / hour]</td>
</tr>
<tr>
<td>Dangerous undetected failures</td>
<td>( \lambda_{DU} ) [failures / hour]</td>
</tr>
<tr>
<td>Dangerous detected failures, PST</td>
<td>( \lambda_{DD} ) [failures / hour]</td>
</tr>
<tr>
<td>Safe failures</td>
<td>( \lambda_s ) [failures / hour]</td>
</tr>
</tbody>
</table>

### 3.6 Systematic integrity

Systematic integrity requirements according IEC 61508 (2010) up to and including SIL3 are fulfilled. These requirements include adequate integrity against systematic errors in the product design, and controlling systematic failures in the selection and manufacturing process. M and X series valves must not be used in safety integrity functions with higher than stated SIL level without prior in use statement or redundant designs.

### 3.7 Additional information

Personnel doing the maintenance and testing must be competent to perform the required actions. Verify final element is operational before startup.

Proof testing should be recorded and documented according to IEC 61508 and maintenance actions done according to Paragraph 5.

Unless the procedures above are properly followed, the reliability data shown in 3.5 may not be valid.

### 4. Installation

The Metso M and X series valves must be installed into the pipeline according to Metso’s instructions given in the IMO. Possible standards relevant to applications, local requirements, etc should be also considered. Installation must be done by competent persons. In case of bare shaft valve is installed to actuator assembly, verify the suitability of all linkage parts (see more details in IMO). It is particularly important to confirm that all components are working properly together.

Incorrect installation may jeopardize the validity of reliability data given in Paragraph 3.5.

In cases where the complete valve assembly is shipped by Metso, the complete valve assembly is tested and configured according Metso internal procedures, except where project specific procedures are used.
5. Operation

5.1 Recommended proof test

The purpose of the proof testing is to detect failures of the complete final element subsystem. Metso recommends the following proof test procedure:

- **Visual inspection.** Check that there are no unauthorized modifications in SIS final element. Check that the SIS final element is in the normal position and that verify all accessories are according the specification for the SIS valve normal operation. Verify that there is no observable deterioration in SIS valve, such as pneumatic leakages, visible damages or impurities on the SIS valve.

- **Bypass the SIS final element, if full stroke may cause an unnecessary process shutdown or other negative effects.**

- **Perform the safety action (full stroke) preferably using the safety system.** Verify that the SIS valve achieves the safe position within the required time specified by the application. Verify also the shutoff tightness for tightness critical applications. Note, that tightness measurements might require removing the valve from the pipeline. If the valve is removed from the pipeline repeat full stroke test after re-installation.

- **Restore the SIS valve into normal position.**

- **Visual inspection.** Check the SIS final element is in normal position and verify all accessories are according the specification for the SIS valve normal operation. Inspect visually there is no observable deterioration in SIS final element.

- **Record all results and observations into corresponding database with necessary audit trail information.**

- **Remove the SIS final element bypassing.**

5.2 Recommended partial stroke test

A partial stroke test is a verified movement of an emergency valve from the normal operating position toward the safe state. Partial stroke testing can be done while the process is on-stream without disturbing the process to provide early detection of automated block valve failure modes and to improve probability of failure on demand. Metso recommends using testing capability available with intelligent partial stroke devices such as Neles ValvGuard. In order to obtain the full benefit of diagnostics provided by partial stroke devices ensure first that the device is calibrated and configured correctly according to manufacturer’s guidelines.

Before initiating the partial stroke ensure that the partial stroke will not cause a process hazard. If needed, the possible pressure disturbance can be further estimated by using Metso’s Nelprof valve sizing software.

The required partial stroke test interval may depend on application and targeted SIL level, but test intervals from 1 month to 6 month are generally recommended. Partial stroke size is typically from 10 to 20% in shutdown service and from 3 to 5 % within the valve’s dead angle value to maintain the valve tightness in blow-down service.

Partial stroke test can be initiated either manually or automatically. The test interval is set by the user. The user can be reminded by partial stroke scheduler system in manual mode and the test interval is controlled by intelligent partial stroke test device in the automatic mode. Contact the partial stroke test device manufacturer for more details on how to select and set parameters to control partial stroke size and frequency.

5.3 Maintenance

Any repair for the Neles M and X series valves must be carried out by Metso or competent personnel. All repairs must be done according to Metso’s maintenance procedures given in the corresponding IMO. After the maintenance, do shell test and verify seat tightness if necessary according to relevant tightness standards. Verify the functionality of the valve including the assembly regarding the safety function in question.

Note, that all maintenance actions should be recorded.

Metso Service provides recommended spare part kits defined in the Bill of Material of every Instructions, Maintenance and Operation Manual (IMO). The need for spare parts replacement is directly comparable to the amount of operations done by the valve unit during its lifetime and the severity of service.

Soft sealing materials especially are affected by aging and useful lifetime depends strongly on the application. Therefore the condition of those components should be checked carefully during proof testing. In optimum operating conditions the interval may be extended up to 10 years. The estimated typical time for spare parts change is 0 to 2 times during the valve useful lifetime. Possible failures must be overhauled in case of failure or doubt observed in proof testing.
6. References

[1] IMO: 1M70, 1X72, 1X73, 1X78
[2] SIL certification: V 512.01/16
[5] Neles ValvGuard IMO: 7VG9H70ES, 7VG9H70, 7VG9F70, 7LCP9H

Appendix 1. An example of reliability (PFD) calculation for complete final element.
X series - valve and B-series actuator equipped with Neles ValvGuard for partial stroke and safety action.
X series- valve and B-series actuator equipped with solenoid valve controller for safety action.

Appendix 2. Equations to calculate PFD for 1oo1 and 1oo1D final elements.

An average value of probability of failure on demand for 1oo1D architecture with diagnostic is given by equation

\[
PFD_{AVG} = DC \times \lambda_D \times \frac{T_I_{PST}}{2} + (1-DC) \times \lambda_D \times \frac{T_I_{FST}}{2} + \lambda_D \times MTTR
\]

where DC is diagnostic coverage, \( \lambda_D \) is dangerous failure rate, \( T_I_{FST} \) is full stroke test interval, \( T_I_{PST} \) is partial stroke test interval and MTTR is mean time to repair.

Diagnostic coverage provided by partial stroke is utilized for valve, actuator, quick exhaust valve and volume booster. Diagnostic test for solenoid or air operated valve is not available.

ValvGuard is using diagnostic coverage provided by internal pneumatic diagnostic test or partial stroke test. PFD equation for 1oo1 voting without diagnostic test is similar to 1oo1D except diagnostic coverage is equal to 0. The equation corresponds to IEC 61508 and ISA TR-96.05.02.