Intelligent Valve Controller
NDX

Safety Manual
Table of Contents

1 General information .. 3
 1.1 Purpose of the document .. 3
 1.2 Description of the device .. 3

2 Structure of intelligent valve controller ... 3
 2.1 System components and description of use .. 3
 2.2 Permitted device types ... 3
 2.3 Supplementary device documentation .. 3

3 Description of safety requirements ... 3
 3.1 Safety function ... 3
 3.2 Restrictions for use in safety-related applications ... 3
 3.3 Functional safety indicators .. 4
 3.4 Useful lifetime .. 4
 3.5 Behavior of device .. 4
 3.5.1 During power-up ... 4
 3.5.2 During operation ... 4
 3.5.3 During emergency trip ... 4
 3.5.4 In the event of alarms and warnings .. 4

4 Installation .. 5
 4.1 Hardware fault tolerance ... 5
 4.2 Installation and commissioning .. 5
 4.3 Diagnostics coverage .. 5
 4.4 Parameters write protection .. 5
 4.5 Operation .. 5
 4.6 Maintenance .. 5

5 Testing ... 6
 5.1 Partial stroke test (PST) ... 6
 5.2 Valve proof-test ... 6

6 Repair and maintenance ... 6

7 SIL certificate ... 7
1. General information

1.1 Purpose of the document

This safety manual provides necessary information to design, install, verify and maintain safety instrumented function (SIF) using the Metso’s NDX Intelligent Valve Controller.

The document must be used as part of the safety lifecycle. Information provided in this manual is necessary for meeting the IEC 61508 or IEC 61511 functional safety standards.

1.2 Description of the device

Neles NDX is loop powered SIL 2 certified intelligent valve controller and thus a safety related product. Extra attention is required to make sure it is used in a way it is intended to be used and in a safe manner.

NOTE:

HART communication can be used for informational purposes, but is not safety certified for diagnostic annunciation.

2. Structure of intelligent valve controller

2.1 System components and description of use

See the IMO for the detailed technical description of the device and the system architecture.

2.2 Permitted device types

The information in this manual pertaining to functional safety applies to all NDX device variants mentioned in the device type coding in the IMO.

2.3 Supplementary device documentation

This manual is not intended to be used as a stand-alone document. It must be used together with the document 7NDX71en; Installation, Maintenance and Operating Instructions for Neles NDX (later referred as IMO).

It is available from your local Metso office or for download from www.metso.com/NDX

3. Description of safety requirements

3.1 Safety function

Safety function part of NDX intelligent valve controller consists of the prestage and the output stage. They are the only components, which take part of the safety function. Prestage unit is a coil operated flapper valve, which is open when de-energized. De-energized is the safe state of the device prestage unit coil. Prestage unit is controlling the output stage, which is operated by spring force to fail safe position and by pneumatic force to the normal position.

See figure 1 for the principle of operation. Prestage will be de-energized when input signal (loop current) to the device (NDX) is 0 mA. That will cause the output stage to release the air from the exhaust port ((Exh I or Exh A1 depending on the NDX type) and drive the emergency shutdown valve to close or open position depending on the application type.

Safety function is to release the air from Exh I port via the output stage exhaust. Reaction time of safety function is <200 milliseconds. The closing (or opening) time of the valve depends on the size and type of the pneumatic actuator and the valve, the supply pressure etc.

Micro controller and firmware are not part of or cannot prevent the safety action. Measurements from the pressure sensors (PS, PI) and position sensor (Pos) are used for controlling the Partial Stroke and other tests and used for the device diagnostics only.

Figure 1. Operating principle of NDX1510
3.2 Restrictions for use in safety-related applications

Please ensure that the valve controller is used correctly for the application in question and that the ambient conditions and air supply quality are taken into account. The instructions for installation conditions, as detailed in the IMO, shall be observed. The specifications in the IMO shall not be exceeded.

3.3 Functional safety indicators

The table below shows the specific indicators for functional safety.

<table>
<thead>
<tr>
<th>Route of Assessment</th>
<th>(\frac{2 \lambda_t}{1_s})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Sub-system</td>
<td>Type A</td>
</tr>
<tr>
<td>Mode of Operation</td>
<td>Low Demand Mode</td>
</tr>
<tr>
<td>Hardware Fault Tolerance</td>
<td>HFT</td>
</tr>
<tr>
<td>Lambda Dangerous</td>
<td>(\lambda_{D}) 3.50 E-07 / h 350 FIT</td>
</tr>
<tr>
<td>Lambda Dangerous Undetected</td>
<td>(\lambda_{DU}) 3.50 E-07 / h 350 FIT</td>
</tr>
<tr>
<td>Mean Time To Dangerous Failure</td>
<td>MTTF_95 2.86 E+06 h 326 a</td>
</tr>
<tr>
<td>Average Probability of Failure on Demand (1oo1)</td>
<td>(PFD_{avg} (T_{1})) 1.53 E-03</td>
</tr>
<tr>
<td>Average Probability of Failure on Demand (1oo2)</td>
<td>(PFD_{avg} (T_{1})) 1.56 E-04</td>
</tr>
</tbody>
</table>

assumed level of calculation \(1-\alpha = 95\% \)
assumed Diagnostic Coverage DC = 0%
assumed Proof Test Interval \(T_{1} = 1 \) year
assumed \(\beta_{1oo2} = 10\% \)
3.4 Useful lifetime
A useful lifetime of approximately 12 years is expected for NDX in safety related applications.

3.5 Behavior of device

3.5.1 During power-up
It may take up to 30 seconds for device diagnostics to power up and the device to be fully operational in the diagnostics point of view. This is valid when the loop current is switched on and goes to 3.7 mA or above. This does not effect to the safety function of the device.

3.5.2 During operation
Once the device is powered, the device energizes the prestage and the supply air will be fed to the pneumatic actuator by output stage. That will eventually cause the valve to go to its normal operating position according to the input signal.

3.5.3 During emergency trip
See section 3.1.

3.5.4 In the event of alarms and warnings
There are few failures (e.g. position sensor failure) which causes NDX to go to fail safe position. See the IMO for details.

4. Installation

4.1 Hardware fault tolerance
The required hardware fault tolerance of the installation is zero (HFT = 0). If hardware fault tolerance of one (HFT =1) is required, then a dual redundant configuration of the valve installation shall be used. The overall safety integrity depends mainly on the actuator and the valve (ESD or ESV).

4.2 Installation and commissioning
The installation of the device needs to be done according to the IMO. Every parameter related to the device type in question and mentioned in the IMO needs to be checked and compared against the device settings. If any deviations exist the safety of the installation cannot be guaranteed.

The NDX shall be configured before commissioning. The parameters configured to the NDX shall be read back and verified before commissioning using the HART Device Description (DD) or Metso's Valve Manager (DTM) for NDX.

4.3 Diagnostics coverage
To obtain the best possible diagnostic coverage, the various alarm limits in the NDX intelligent valve controller shall be set, see Section 13 in the IMO.

The diagnostic coverage factor for an ESD-valve (a fail to close valve) can be assumed to be around 75 % (valve + actuator), depending on the valve and actuator types. The diagnostic coverage factor for an ESV-valve (fail to open valve) can be assumed to be around 90 % (valve + actuator), depending on the valve and actuator types. For more accurate estimates contact Metso.

4.4 Parameters write protection
The parameters programmed in the NDX shall be write protected. If the organizational procedures are established, this can be done using the user access levels in the configuration software.

4.5 Operation
See the IMO for the operation of the device.

4.6 Maintenance
See the IMO for maintenance instructions.

During maintenance work on the device, alternative safety function methods shall be taken to ensure process safety.
5. **Testing**

5.1 **Partial stroke test (PST)**

Device can perform valve partial stroke test, where the safety shutdown valve will be stroked certain amount from it’s normal operating position. Typically this stroke size is about 10-20% depending on the process. The stroke size shall be defined by the user and should be defined so that the upset for the process is kept as minimum. For procedure and details see the IMO.

5.2 **Valve proof-test**

Safety shutdown valve proof-test is related to the required SIL level of the application. PFD calculations should define this safety shutdown valve proof test interval. To perform the proof-test check that the device is not in the fail-safe position, de-energize (0 mA) the input signal and check that the valve moves to the intended fail-safe position. See the valve safety manual for further info regarding the proof testing.

The whole safety loop shall be tested via the safety system / logic solver.

6. **Repair and maintenance**

Any repair and maintenance to the device shall be carried out only by the qualified person. Device failures must be reported to the manufacturer. The user shall provide a detailed report to the manufacturer describing the failure and any possible effects.
7. SIL certificate

Certificate

No.: 968/V 1006.00/17

Product tested: Intelligent Valve Controller

Certificate holder: Metso Flow Control Oy
Vanha Porvoontie 229
01301 Vantaa
Finland

Type designation: NDX 1510

Codes and standards: IEC 61508 Parts 1-2 and 4-7:2010

Intended application:
Safety Function: De-energizing of the NDX 1510 valve controller shall drive the relay valve to safety position by pre-loaded spring and channel 1 vents pressure out to atmosphere so that the attached actuator can drive the valve to its safe state.

The valve controllers are suitable for use in a safety instrumented system, e.g. acc. IEC 61511-1:2016, up to SIL 2 (low demand mode). Under consideration of the minimum required hardware fault tolerance HFT = 1 the valve controller may be used in a redundant architecture up to SIL 3.

Specific requirements: The instructions of the associated Installation, Operating and Safety Manual shall be considered.

Summary of test results see back side of this certificate.

Valid until 2022-07-05

The issue of this certificate is based upon an examination, whose results are documented in Report No. 968/V 1006.00/17 dated 2017-07-05.
This certificate is valid only for products which are identical with the product tested. It becomes invalid at any change of the codes and standards forming the basis of testing for the intended application.

Köln, 2017-07-05

Dipl.-Ing. Stephan Häb

www.fs-products.com
www.tuv.com