NELES® ND9000 INTELLIGENT VALVE CONTROLLER

Metso’s Neles ND9000 is a top class intelligent valve controller designed to operate on all control valve actuators and in all industry areas. It guarantees end product quality in all operating conditions with unique diagnostics and incomparable performance features. ND9000 is a reliable and future-proof investment with life-time support.

KEY FEATURES
- Benchmark control performance on rotary and linear valves
- Reliable and robust design
- Easy commissioning and operation
- Safety; IEC 61508 compliant up to and including SIL 2 by TUV
- Language selection: English, German and French
- Local / remote operation
- Expandable architecture
- Advanced device diagnostics including
 - Self-diagnostics
 - Online diagnostics
 - Performance diagnostics
 - Communication diagnostics
 - Extended off-line tests
 - Performance view
 - Online Valve Signature

Options
- Interchangeable communication options:
 - HART 6 or 7 (H)
 - FOUNDATION fieldbus
 - Profibus PA
- Limit switches
- Position transmitter (in HART only)
- Full stainless steel enclosure
- Exhaust adapter
- Remote mounting
- Arctic version (up to -53 °C / -64 °F)

Total cost of ownership
- Low energy and air consumption
- Future proof design allows further options at a reduced cost
- Optimized spares program minimizes spare part inventory
- Retro-fit to existing installations (Neles or 3rd party valves)

Minimized process variability
- Linearisation of the valve flow characteristics
- Excellent dynamic and static control performance
- Fast response to control signal change
- Accurate internal measurements

Easy installation and configuration
- Same device can be used for linear and rotary valves, double and single-acting actuators
- Simple fast calibration and configuration
 - using Local User Interface (LUI)
 - using DTM / EDD in a remote location
 - using Distributed Control System (DCS) asset management tools
- Extensive selection of mounting kits for 3rd party actuators
- Low power consumption enables installation to all common control systems

Open solution
- Metso is committed to delivering products that freely interface with software and hardware from a variety of manufacturers; ND9000 is no exception. This open architecture allows the ND9000 to be integrated with other field devices to give an unprecedented level of controllability.
- FDT and EDD based multi-vendor support configuration
- Support files for ND9000 are available from our internet pages, at www.metso.com/valves - choose the link: download center

Expect results
Neles ND9000 in fieldbus networks

- Approved interoperability
- Host interoperability ensured
- FOUNDATION fieldbus ITK version 6.1.2 certified
- Profibus PA profile version 3.0 PNO certified
- Easy to upgrade; by replacing the HART communication board with a fieldbus communication board
- Excellent maintainability with firmware download feature
- Advanced communication diagnostics
- Digital communication via the fieldbus includes not only the set point, but also the position feedback signal from the position sensor. No special supplementary modules for analog or digital position feedback are needed when using the fieldbus valve controller.
- Back up LAS functionality available in FOUNDATION fieldbus environment
- Input selector and output splitter blocks available in FOUNDATION fieldbus devices allowing advanced distributed control
- Standard function blocks enables the freedom to use the ND9000 intelligent valve controller in either continuous or on-off control applications
- Open and close information is directly available via the fieldbus
- Open and close detection is based on either position measurement (soft limit switch) or mechanical limit switch information

ND9000 mounting on actuators and valves

- Mounted on single and double acting actuators
- Both rotary and linear valves
- Ability to attach options to electronics and mechanics later
- 1-point calibration feature enables mounting without disturbing the process

Product reliability

- Designed to operate in harsh environmental conditions
- Rugged modular design
- Excellent temperature characteristics
- Vibration and impact tolerant
- IP66 enclosure
- Stainless steel enclosure (ND9300 and ND9400)
- Protected against humidity
- Maintenance free operation
- Resistant to dirty air
- Wear resistant and sealed components
- Contactless position measurement

Predictive maintenance

- Easy access to collected data with Metso DTM
- Unique Online Valve Signature to detect valve friction even more accurately.
- Performance view with report, which gives guidelines for recommended actions.
- Logical trend and histogram collection
- Information collected during process uptime
- Extensive set of off-line tests with accurate key figure calculations
- Fast notifications with on-line alarms
- Condition monitoring tool available
- Real time monitoring of valve control parameters

TECHNICAL DESCRIPTION

The ND9000 is a 4–20 mA or fieldbus powered microcontroller-based intelligent valve controller. The device contains a Local User Interface (LUI) enabling local configuration. A PC with FDT/DTM software can be connected to the ND9000 itself or to the control loop.

The powerful 32-bit microcontroller controls the valve position. The measurements include:

- Input signal
- Valve position with contactless sensor
- Actuator pressures, 2 independent measurements
- Supply pressure
- Spool valve position
- Device temperature

Advanced self-diagnostics guarantees that all measurements operate correctly. After connections of electric signal and pneumatic supply, the micro controller (µC) reads the input signal, position sensor (α), pressure sensors (Ps, P1, P2) and spool position sensor (SPS). A difference between input signal and position sensor (α) measurement is detected by control algorithm inside the µC. The µC calculates a new value for prestage (PR) coil current based on the information from the input signal and from the sensors. The changed current to the PR changes the pilot pressure to the spool valve. Reduced pilot pressure moves the spool and the actuator pressures change accordingly. The spool opens the flow to the driving side of the double diaphragm actuator and opens the flow out from the other side of the actuator. The increasing pressure will move the diaphragm piston. The actuator and feedback shaft rotate. The position sensor (α) measures the rotation for the µC. The µC using control algorithm modulates the PR-current from the steady state value until the new position of the actuator, according to the input signal, is reached.
TECHNICAL SPECIFICATIONS
ND9000 INTELLIGENT VALVE CONTROLLER

General
Loop powered, no external power supply required.
Suitable for rotary and linear valves.
Actuator connections in accordance with VDI/VDE 3845 and IEC 60534-6 standards.
Flush mounting on selected actuators
Action: Double or single acting
Travel range: Linear; 10–120 mm / 0.4-4.7 in
rotate; 45–95 degrees. Measurement range 110° with freely rotating feedback shaft.

Environmental influence
Standard temperature range: -40 °C to +85 °C / -40 °F to +185 °F
Arctic temperature range: -53 °C to +85 °C / -64° to +185 °F
Influence of temperature on valve position: 0.5 % /10 °K
Influence of vibration on valve position:
< 1 % under 2g 5–150 Hz,
1g 150–300 Hz, 0.5g 300–2000 Hz

Enclosure
Material: ND9100: Anodized aluminum alloy and polymer composite
ND9200: Anodised aluminum alloy and tempered glass
ND9400: Stainless steel and polymer composite
ND9300: Stainless steel
Protection class: IP66, Nema 4x
Pneumatic ports: G 1/4 (ND9100)
1/4 NPT (ND9200, ND9300 & ND9400)
Cable gland thread: M20x1.5 (ND9000)
1/2 NPT (ND9000E2, ND9000U)
Weight: 1.8 kg / 4.0 lbs (ND9100)
3.4 kg / 7.5 lbs (ND9200)
5.6 kg / 12.4 lbs (ND9400)
8.6 kg / 19.0 lbs (ND9300)
Mechanical and digital position indicator visible through main cover, not applicable to ND9200E2 and ND9300.
Special corrosion resistant design or stainless steel housing available as an option for demanding environment.

Pneumatics
Supply pressure: 1.4–8 bar / 20–115 psi
Effect of supply pressure on valve position:
< 0.1 % at 10 % difference in inlet pressure
Air quality:
Acc. to ISO 8573-1
Solid particles: Class 5 (3 – 5 μm filtration is recommended)
Humidity: Class 1 (dew point 10 °C/
18 °F below minimum temperature is recommended)
Oil class: 3 (or < 1 ppm)

Electronics
HART
Supply power: Loop powered, 4–20 mA
Minimum signal: 3.6 mA
Current max : 120 mA
Load voltage: up to 9.7 VDC/20 mA
(corresponding 485 Ω)
Voltage: max. 30 VDC
Polarity protection:
Over current protection: active over 35 mA

Profibus PA and FOUNDATION fieldbus
Supply power: voltage 9–32 VDC, reverse polarity protection
Max basic current: 17.2 mA
Quiescent Current Draw: 16 mA
Fault current (FDE): 3.9 mA

FOUNDATION fieldbus function block execution times
AO 20 ms
AI 20 ms
PID 20 ms
DO 20 ms
DI 15 ms
IS 15 ms
OS 15 ms

Performance with moderate constant-load actuators
Dead band: ≤ 0.1 %
Hysteresis: < 0.5 %

Local User Interface (LUI) functions
□ Local control of the valve
□ Monitoring of valve position, target position, input signal, temperature, supply and actuator pressure difference
□ Guided-startup function
□ LUI may be locked remotely to prevent unauthorised access
□ Calibration: Automatic / Manual linearization
□ 1-point calibration
□ Control configuration: aggressive, fast, optimum, stable, maximum stability
□ HART version configuration: HART 6 or HART 7
□ Configuration of the control valve
□ Rotation: valve rotation clockwise or counter-clockwise to close
□ Dead Angle
□ Low cut-off, cut-off safety range (default 2 %)
□ Positioner fail action, open/close
□ Signal direction: Direct/reverse acting
□ Actuator type, double/single acting
□ Valve type, rotary/linear
□ Language selection: English, German and French

Position transmitter (optional)
Output signal: 4–20 mA (galvanic isolation; 600 VDC)
Supply voltage: 12–30 VDC
Resolution: 16 bit / 0.244 μA
Linearity: > 0.05 % FS
Temperature effect: < 0.35 % FS
External load: max 0–780 Ω
max 0–690 Ω for intrinsically safe
Ex ia IIC T6
Ui ≤ 28 V
Ex d IIC T4/T5/T6
Ui ≤ 30 V
APPROVALS AND ELECTRICAL VALUES, HART

<table>
<thead>
<tr>
<th>Certificate</th>
<th>Approval</th>
<th>Electrical values</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATEX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND X</td>
<td>VTT 09 ATEX 03X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VTT 09 ATEX 04X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EN 60079-0: 2009/2012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EN 60079-11: 2012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EN 60079-26: 2007</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EN 60079-31-2008</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EN 60079-0: 2009/2012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EN 60079-11: 2012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EN 60079-15: 2010</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EN 60079-31-2008</td>
<td></td>
</tr>
<tr>
<td>ND E1</td>
<td>SIRA 11 ATEX 1006X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EN 60079-0:2009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EN 60079-1:2007</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EN 60079-31-2009</td>
<td></td>
</tr>
<tr>
<td>IECEx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND X</td>
<td>IECEx VTT 10.0004X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IECEx VTT 10.0005X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IEC 60079-0: 2007/2011</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IEC 60079-11: 2011</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IEC 60079-26: 2006</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IEC 60079-31-2008</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IEC 60079-0: 2007/2011</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IEC 60079-11: 2011</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IEC 60079-15: 2010,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IEC 60079-31-2008</td>
<td></td>
</tr>
<tr>
<td>ND E1</td>
<td>IECEx SIR 11.0001X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EN 60079-0:2011</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EN 60079-1:2007</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EN 60079-31-2008</td>
<td></td>
</tr>
<tr>
<td>INMETRO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND Z</td>
<td>NCC 12.0793 X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NCC 12.0794 X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABNT NBR IEC 60079-0:2013</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABNT NBR IEC 60079-11:2009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABNT NBR IEC 60079-27:2010</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABNT NBR IEC 60079-0:2013</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABNT NBR IEC 60079-11:2009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IEC 60079-15:2012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABNT NBR IEC 60079-27:2010</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABNT NBR IEC 60529:2005</td>
<td></td>
</tr>
<tr>
<td>ND E5</td>
<td>NCC 12.0795 X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABNT NBR IEC 60079-0:2013</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABNT NBR IEC 60079-1:2009 (2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABNT NBR IEC 60079-31-2011</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABNT NBR IEC 60529:2005</td>
<td></td>
</tr>
<tr>
<td>ccSAus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND U</td>
<td>CSA C22.2 No. 0-M91, CSA C22.2 No. 94-M91,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSA C22.2 No. 142-M1987,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSA/C C22.2 No. 157-92, CSA C22.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No.213-M1987, CSA C22.2 No. 60079-0:11,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSA C22.2 No. 60079-11:11, CSA C22.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No.60079-15-12, CSA C22.2 No. 60529:05,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANSI/ISA 60079-0:2009,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANSI/ISA 60079-11: 2012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANSI/ISA 60079-15: 2012,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FM 3600 November 1998, FM 3610 October 1999,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FM 3611 October 1999, FM 3810-2005,</td>
<td></td>
</tr>
<tr>
<td>ND E5</td>
<td>CSA Std C22.2 No. 25-1966, CSA Std</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C22.2 No. 30-M1986, CAN/CSA-C22.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No.94-M91, C22.2 No. 142-M1987,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAN/CSA C22.2 2.61010-1-04, CAN/CSAC22.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No 60079-0:07, CAN/CSA-C22.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No 60079-1-07, CAN/CSA-C22.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No 60079-31-12, CAN/CSA-C22.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No.60529-05, FM 3600 (1998),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FM 3615 (2006), FM 3810 (2005),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANSI/NEMA 250-1991, ISA 60079-0:07,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISA 60079-1-07, ISA 60079-31-2009,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANSI/IEC 60529:2004</td>
<td></td>
</tr>
<tr>
<td>TIIS (JS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND E4</td>
<td>Ex d II C T6</td>
<td></td>
</tr>
</tbody>
</table>

Input: $U_i \leq 30 \text{ V}$, $I_i \leq 152 \text{ mA}$

Output: $U_i \leq 30 \text{ V}$, $P_{\text{max}} = \text{device limits itself}$, $C_i \leq 22 \text{ nF}$, $L_i \leq 53 \mu\text{H}$.

Technical Bulletin: 5/19

METSO

7 ND90 21 EN
Approvals and Electrical Values, Foundation fieldbus and Profieldus PA

<table>
<thead>
<tr>
<th>Certificate</th>
<th>Approval</th>
<th>Electrical values</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATEX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND_X</td>
<td>VTT 09 ATEX 033X</td>
<td>II 1G Ex ia IIC T6...T4 Ga, II 1D Ex ia IIC T90 °C Da, II 2 G Ex ib IIC T6...T4 Gb, II 2 D Ex tb IIC T90 °C Db</td>
</tr>
<tr>
<td></td>
<td>VTT 09 ATEX 034X</td>
<td>UI ≤ 24 V, II ≤ 380 mA, Pi ≤ 5.32 W, Ci ≤ 5 nF, Li ≤ 10 μH.</td>
</tr>
<tr>
<td></td>
<td>EN 60079-0: 2009/2012</td>
<td>Comply with the requirements for FISCO field device</td>
</tr>
<tr>
<td></td>
<td>EN 60079-11: 2012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EN 60079-26: 2007</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EN 60079-31: 2008</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EN 60079-0: 2009/2012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EN 60079-11: 2012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EN 60079-15: 2010</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EN 60079-31: 2008</td>
<td></td>
</tr>
<tr>
<td>ATEX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND_E1</td>
<td>SIRA 11 ATEX 1006X</td>
<td>II 2 G d IIC T6...T4 Gb, II 2 D Ex tb IIC T80 °C...T105 °C Db</td>
</tr>
<tr>
<td></td>
<td>EN 60079-1:2007</td>
<td>UI ≤ 24 V, II ≤ 380 mA, Pi ≤ 5.32 W, Ci ≤ 5 nF, Li ≤ 10 μH.</td>
</tr>
<tr>
<td></td>
<td>EN 60079-31: 2008</td>
<td>Comply with the requirements for FISCO field device</td>
</tr>
<tr>
<td>IECEx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND_X</td>
<td>IECEx VTT 10.0004X</td>
<td>Ex iia IIC T6...T4 Ga, Ex ia IIC T90 °C Da, Ex ib IIC T6...T4 Gb, Ex tb IIC T90 °C Db</td>
</tr>
<tr>
<td></td>
<td>IECEx VTT 10.0005X</td>
<td>UI ≤ 24 V, II ≤ 380 mA, Pi ≤ 5.32 W, Ci ≤ 5 nF, Li ≤ 10 μH.</td>
</tr>
<tr>
<td></td>
<td>IEC 60079-0: 2007/2011</td>
<td>Comply with the requirements for FISCO Ex ic field device</td>
</tr>
<tr>
<td></td>
<td>IEC 60079-1:2007</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IEC 60079-31:2008</td>
<td></td>
</tr>
<tr>
<td>IECEx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND_E1</td>
<td>IECEx SIR 11.0001X</td>
<td>Ex d IIC T6...T4 Gb, Ex tb IIC T80 °C...T105 °C Db</td>
</tr>
<tr>
<td></td>
<td>IEC 60079-0:2011</td>
<td>UI ≤ 24 V</td>
</tr>
<tr>
<td></td>
<td>IEC 60079-1:2007</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IEC 60079-31:2008</td>
<td></td>
</tr>
<tr>
<td>INMETRO</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NCC 12.0794 X</td>
<td>UI ≤ 24 V, II ≤ 380 mA, Pi ≤ 5.32 W, Ci ≤ 5 nF, Li ≤ 10 μH.</td>
</tr>
<tr>
<td></td>
<td>ABNT NBR IEC 60079-0:2008 (2011)</td>
<td>Comply with the requirements for FISCO field device</td>
</tr>
<tr>
<td></td>
<td>ABNT NBR IEC 60079-11:2009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABNT NBR IEC 60079-27:2010</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABNT NBR IEC 60079-0:2008 (2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABNT NBR IEC 60079-11:2009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABNT NBR IEC 60079-15:2010</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABNT NBR IEC 60079-27:2010</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABNT NBR IEC 60529:2009</td>
<td></td>
</tr>
<tr>
<td>IECEx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND_E5</td>
<td>NCC 12.0795 X</td>
<td>Ex d IIC T4/T5/T6 Gb, Ex ib IIC T100 °C Db</td>
</tr>
<tr>
<td></td>
<td>ABNT NBR IEC 60079-0:2008 (2011)</td>
<td>UI ≤ 32 V</td>
</tr>
<tr>
<td></td>
<td>ABNT NBR IEC 60079-31:2011</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABNT NBR IEC 60529:2009</td>
<td></td>
</tr>
<tr>
<td>CSAus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IECEx</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Electromagnetic Protection
Electromagnetic compatibility acc. to
Immunity: EN 61000-6-2 (2005)

Safety
IEC 61508 compliant up to and
including SIL 2 by TUV

CE marking
EMC 2014/30/EU
ATEX 94/9/EC (until 19 April 2016)
ATEX 2014/34/EU (from 20 April 2016)

PROXIMITY SENSORS AND LIMIT SWITCHES
(OPTIONAL WITH EXTENSION MODULE FOR ND9100, ND9200 & ND9300)

- Code D33 SST Sensor Dual Module
- Code D44 Namur Sensor Dual Module
- Code I02 P+F NJ2-12GK-5N, 2 sensors
- Code I09 P+F; NCB2-12GM35-N0
- Code I32 Omron E2E-X2Y1, micro switch, 2 sensors
- Code I41 P+F, NJ4-12GK-5N, 2 sensors
- Code I45 P+F NJ3-13GK-5N, 2 sensors
- Code I56 IFC 2002-ARKG/UR, 2 sensors
- Code K05 Omron D2VW-S, micro switch, 2 sensors
- Code K06 Omron D2VW-01 gold plated, micro switch
- Code B06 Omron D2VW-01 gold plated, micro switch, 2 sensors.
 (Bus powered, no external power and cabling needed).

Figure 1. The Performance View of the Metso Valve Manager graphically displays indexes of the valve, actuator and positioner, as well as indexes of control performance and the application environment. Report will show explanations of the status of each component and guidelines for recommended actions.

Figure 2. Valve Online Signature feature shows friction of the control valve online, under normal process conditions when ever the valve is changing position.
DIMENSIONS

ND9100 and ND9400
ND9100/I, ND9100/K and ND9100/B

ND9200
ND9200/I, ND9200/K and ND9200/B
The feedback lever according to actuator (35.4)

F05-ø50 M6x10 (4 pcs.)
M8x15 (3 pcs.)
1/4 NPT
VDI/VDE 3845

ND9300/1, ND9300/K and ND9300/B

ND9300

Option J
HOW TO ORDER

INTELLIGENT VALVE CONTROLLER ND9000 / LIMIT SWITCH (ND9000/D__, ND9000/I__, ND9000/K0_ or ND9000/B06)

<table>
<thead>
<tr>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
<th>7.</th>
<th>8.</th>
<th>9.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND</td>
<td>9</td>
<td>2</td>
<td>03</td>
<td>H</td>
<td>E1</td>
<td>T</td>
<td>/</td>
<td>K05</td>
</tr>
</tbody>
</table>

2. SERIES CODE

9

Series 9000 valve controller with universal shaft and attachment face according to standard VDI/VDE 3845. Relevant shaft adapter included in mounting kits. When valve controllers are separate deliveries, shaft adapter kit is supplied.

6. APPROVALS FOR HAZARDOUS AREAS

cCSAus certifications:
- Class I, Division 1, Groups A, B, C, and D; T4/T5/T6
- Ex ia IIC T4/T5/T6 Ga
- Temperature range: T4: -40 °C to +80 °C; T5: < +65 °C; T6: < +50 °C.
- Applicable for 5. sign F or P.
- Class I, Division 2, Groups A, B, C, and D; T4/T5/T6
- Ex ia IIC T4/T5/T6 Ge
- Class I, Zone 2 AEx nA IIC T4/T5/T6 Gc or Ex nA IIC T4/T5/T6 Ge Ga
- Temperature range: T4: -40 °C to +80 °C; T5: < +65 °C; T6: < +50 °C.

Japanese Ex-d Certification:
- 2G Ex IIC T6...T4 Ga
- Temperature range: T6: < +60 °C.

4. PNEUMATIC CONNECTIONS

<table>
<thead>
<tr>
<th>02</th>
<th>Low capacity. Stroke volume of actuator < 1 dm³.</th>
<th>G 1/4 ND91000, 1/4 NPT (ND9200/ND9300/ND9400).</th>
</tr>
</thead>
</table>

5. COMMUNICATION / INPUT SIGNAL RANGE

H	4–20 mA, HART (6 and 7) communication.
F	FOUNDATION fieldbus, physical layer according to IEC 61158-2.
P	Profibus PA, physical layer according to IEC 61158-2.

6. APPROVALS FOR HAZARDOUS AREAS

N	No approvals for hazardous areas. M20 x 1.5 conduit entry. Temperature range: -40 °C to +85 °C. Not applicable to 3. sign "2".
N7	No approvals for hazardous areas. Like N, but this is with Russian language machine plate.
X	ATEX and IECEx certifications:
	II 1 G Ex ia IIC6...T4 Ga
	II 1 D Ex ta IIC6...T4 Da
	II 2 G Ex ib IIC6...T4 Gb
	II 2 D Ex tb IIC6...T4 Db
	Temperature range: T4: -40 °C to +80 °C; T5: < +65 °C; T6: < +50 °C.
	II 3 G Ex na IIC6...T4 Gc
	II 3 D Ex ta IIC6...T4 Dc
	Temperature range: T4: -40 °C to +80 °C; T5: < +65 °C; T6: < +60 °C.
	II 3 G Ex ic IIC6...T4 Gc
	EX ib IIC6...T4 Gc
	Temperature range: T4: -40 °C to +80 °C; T5: < +75 °C; T6: < +60 °C.
	Temperature range: T4: -40 °C to +85 °C; T5: < +75 °C; T6: < +60 °C.
	Not applicable to 3. sign "1" or "4".
	Available without limit switches or with ATEX or IECEx certified inductive limit switches. M20 x 1.5 conduit entry.

NOTE:
- Dust approval:
- II 1 D Ex ta IIC 700 °C Da
- II 2 D Ex tb IIC 700 °C Db
- II 3 D Ex tc IIC 700 °C Dc
- not applicable to 3. sign "4".

| X7 | ATEX and IECEx certifications: Like X, but this is with Russian language machine plate. Check details of marking from X |

7. OTHER ACCESSORIES

- **Accessories for Positioners item 10:**
 - 1/2 NPT conduit entry.
 - With limit switch temperature range is updated according to switch type.

- **G 1/2 Conduit entry and Cable entry adapter.**
 - Temperature range: T4: -40 °C to +85 °C; T5: < +75 °C; T6: < +60 °C.
 - Not applicable to 3. sign "1" or "4".

8. PRODUCT GROUP

- ND Intelligent Valve Controller.

9. ENCLOSURE

- Standard IP66 / NEMA 4X enclosure.
- Flameproof (Ex d) IP66 / NEMA 4X enclosure.
- Stainless steel Flameproof (Ex d) IP66 / NEMA 4X enclosure.
- Stainless steel IP66 / NEMA 4X enclosure, polymeric composite cover.
7. OPTIONS OF VALVE CONTROLLER

Internal 2-wire (passive) position transmitter. Analog position feedback signal, output 4–20 mA, supply voltage 12–30 V DC, external load resistance 0–780 Ω.

ND91_HXT, ND91_HZT, ND92_HXT, ND93_HXT, ND93_HZT, ND94_HXT:
- I I D Ex ia IIC T6..T4 Ga
- II I D Ex ta IIC T90 °C Da
- II I D Ex ia IIC TE..T4 Ga
- II I D Ex ta IIC T90 °C Db

Ui ≤ 28 V, Ii ≤ 120 mA, Pi ≤ 1 W, Ci ≤ 22 nF, Li ≤ 53 μH, external load resistance 0–690 Ω.

ND91_HXT, ND91_HZT, ND92_HXT, ND93_HXT, ND93_HZT, ND94_HXT:
- III G Ex n'a IIC T6..T4 Gc
- III D Ex ta IIC T90 °C Dc
- III I D Ex ia IIC TE..T4 Gc
- III I D Ex ta IIC T90 °C Dc

Ui ≤ 30 V, Pi ≤ 152 mA, Li ≤ 53 μH, external load resistance 0–780 Ω.

ND91_HUT, ND92_HUT, ND94_HUT and ND93_HUT:
- Class I, Division 1, Groups A, B, C, and D; T4/T5/T6

Ex ia IIC T4/T5/T6 Ga

Class I, Zone 0 AEx ia IIC T4/T5/T6 Ga

UI ≥ 28 V, Pi ≤ 120 mA, Li ≤ 53 μH, external load resistance 0–690 Ω.

ND92_HTE1T, ND92_HE2T, ND92_HE4T, ND92_HEST, ND93_HIE1T, ND93_HIE2T, ND93_HIE5T:
- UI ≥ 30 V, Pi ≤ 120 mA, Li ≤ 53 μH, external load resistance 0–780 Ω.

Applicable to 5. sign ‘H’.

Remote mounting:
- Applicable only to 3. sign ‘I’
- Requires always external position measurement. For rotary actuator see accessories type code.

Output values for:*
- HART
 - Uo(Voc) = 3.53V, Io(sc) = 12.6mA, Po = 11.1 mW, Co(Ca) = 10nF, Lo(La) = 10μH, Foundation Fieldbus and Profibus
 - Uo(Voc) = 0.5V, Io(sc) = 17.8mA, Po = 22.2mW, Co(Ca) = 10nF, Lo(La) = 10μH

Temperature range:
- 53 °C to +85 °C / -54 °F to +185 °F

C
- Usable up to SIL2 acc. to IEC61508.
- Limit switches not applicable to 6. sign ‘E4’.

J
- Limit switches applicable only with ND9100, ND9200 and ND9300.
- Option ‘E2: 1/2 NPT conduit entry (2 pcs.).’

K
- Usable up to SIL3 acc. to IEC61508.
- Not applicable to 5. sign ‘H’.

L
- Temperature range: -40 °C to +85 °C / -40 °F to +185 °F.
- Not applicable to 6. sign ‘E4’.

R
- Limit switches applicable only with ND9100, ND9200 and ND9300.

Mechanical micro switches:
- 2 pcs.

IP66 / NEMA 4X enclosure.
- M20 x 1.5 conduit entry (2 pcs.).

Option E2: 1/2 NPT conduit entry (2 pcs.).

Limit switches applicable only with ND9100, ND9200 and ND9300.

K05 Omron D2VW-01, 2-wire type; AC; 150 mA, 10–36 V DC, leakage current < 0.6 mA.
- Temperature range: -20 °C to +85 °C / -4 °F to +185 °F.
- Not applicable to 6. sign ‘E4’.

K06 Omron D2VW-01, 2-wire type; AC; 150 mA, 10–36 V DC, leakage current < 0.6 mA.
- Temperature range: -20 °C to +85 °C / -4 °F to +185 °F.
- Not applicable to 6. sign ‘E4’.

Bus powered mechanical micro switches:
- 2 pcs.

Applicable to ND9000F and ND9000P only.

IP66 / NEMA 4X enclosure.
- M20 x 1.5 conduit entry (2 pcs.).

Option E2: 1/2 NPT conduit entry (2 pcs.).

K06 Omron D2VW-01, 2-wire type; AC; 150 mA, 10–36 V DC, leakage current < 0.6 mA.
- Temperature range: -20 °C to +85 °C / -4 °F to +185 °F.
- Not applicable to 6. sign ‘E4’.

9. OPTIONS OF LIMIT SWITCH

Y
- Special construction.
ADDITIONAL ACCESSORIES

FILTER REGULATOR

- **K5**
 - Filter regulator for supply air.
 - Filter size 5 μm.
 - Pressure gauge, scale bar/psi/kPa and kg/cm², basic material brass, nickel plated, housing stainless steel, glycerine filled.
 - Temperature range -40 °C to +85 °C / -40 °F to +185 °F.
 - Connection plugs 1/4 NPT (S, C1, C2), converts also ND91 connections to 1/4 NPT.
 - Pneumatic connection block, material AlMgSi1, anodized grey.
 - Temperature range: -40 °C to +85 °C / -40 °F to +185 °F.

- **K15**
 - Filter regulator for supply air.
 - Filter size 5 μm.
 - Pressure gauge, scale bar/psi/kPa and kg/cm², basic material brass, nickel plated, housing stainless steel, glycerine filled.
 - Temperature range -40 °C to +85 °C / -40 °F to +185 °F.
 - K15 option includes a thread nipple 1/4"NPT to 1/4"NPT between filter regulator and positioner which is suitable with ND9200 & ND9300 positioner and with option A1 (1/4 AIR CONNECTION).
 - Supply air connector in the filter regulator is female 1/4".

CONDUIT ENTRY NIPPLES

- **CE07**
 - 1/2 NPT conduit entry nipples M20x1.5 / 1/2 NPT (ND9100 and ND9400)

- **CE08**
 - 1/2 NPT conduit entry nipples M20x1.5 / 1/2 NPT (ND9100 and ND9400)

- **CE09**
 - 1/2 NPT conduit entry nipples Brass M20x1.5 / 1/2 NPT, Exd approved (ND9200)

- **CE19**
 - 1/2 NPT conduit entry nipples Stainless Steel M20x1.5 / 1/2 NPT, Exd approved (ND 9300)

CABLE GLANDS

- Not to be used together with conduit entry nipples (CE_) or connection plugs (P_).

- **CG5**
 - M20x1.5 grey/plastic, IP66

- **CG6**
 - M20x1.5 blue/plastic, IP66, Ex e

- **CG43**
 - Conduit entry and cable entry adapter for ND9200 and ND9300 M20x1.5 x 1/2NPT (F). S5316 ExdIIC ExdIIIC Gb, IP66

- **CG44**
 - Conduit entry and cable entry adapter for ND9200 and ND9300 M20x30 x G1/2 (F). S5316 ExdIIC ExdIIIC Gb, IP66

PRESSURE GAUGES AND CONNECTION BLOCKS

- **A1**
 - Pressure gauges, scale bar/psi/kPa and kg/cm², basic material brass, nickel plated, housing stainless steel, oil filled.
 - Temperature range: -40 °C to +85 °C / -40 °F to +185 °F.
 - Pneumatic connection block, material AlMgSi1, anodized grey.
 - Connections G1/4, S, C1, C2.

- **A18**
 - As A1 but includes two pressure gauges with connections G1/4, S, C2. Use with in single acting use only.

- **A3**
 - Pressure gauges, scale bar/psi/kPa and kg/cm², basic material brass, nickel plated, housing stainless steel, oil filled.
 - Temperature range: -40 °C to +85 °C / -40 °F to +185 °F.
 - Pneumatic connection block, material AlMgSi1, anodized grey.
 - Connections 1/4 NPT (S, C1, C2), converts also ND91, connections to 1/4 NPT.

- **A3B**
 - As A3 but two pressure gauges with connections 1/4 NPT (S, C2). Converts also ND91, connections to 1/4 NPT. Use with in single acting use only.

- **A5**
 - Pneumatic connection block, converts ND91, connections to 1/4 NPT.
 - Material AlMgSi1, anodized grey.
 - Connections 1/4 NPT (S, C1, C2).
 - Only for ND9100.

- **A6**
 - Pressure gauges with connections G1/4, for ND9300 or ND9400. Material AlSi 316.

- **A7**
 - Pressure gauges with connections G1/4, ND9300 or ND9400. Material AlSi 316.

- **A10**
 - Pressure gauges with connections 1/4 NPT for ND9300 or ND9400. Material AlSi 316, pressure gauges for severe off-shore use, safety glass window.

- **D3**
 - Non oil filled, dry pressure gauges, scale bar/psi/kPa and kg/cm², basic material brass, nickel plated, housing stainless steel.
 - Temperature range -40 °C to +85 °C / -40 °F to +185 °F.
 - Pneumatic connection block, material AlMgSi1, anodized grey.
 - Connections 1/4 NPT (S, C1, C2), converts also ND91, connections to 1/4 NPT.

- **D3B**
 - As D3 but two pressure gauges with connections 1/4 NPT (S, C2). Converts also ND91, connections to 1/4 NPT.Use with in single acting use only.

CONNECTION PLUGS

- **P1H**
 - ND9000H (HART): Connection plug according to M20x1.5 / DIN 43650A (ISO 4400).
 - Not applicable with 5.sign "F" and "P".

- **P4H**
 - Valve controller and limit switch with connection plugs: (1 + 1 pc ND9000H (HART): M20x1.5 / DIN 43650A (ISO 4400).
 - ND9000/K0 or 2 wire ND9100/100.
 - Not applicable with 5.sign "F" and "P".

- **P2F**
 - ND9000F and ND9000F/06 (FOUNDATION fieldbus): Connection plug male eurofast, Turck FS949, M20x1.5 / M12.
 - Not applicable with 5.sign "H" and "P".

- **P3F**
 - ND9000F and ND9000F/06 (FOUNDATION fieldbus): Connection plug male manifold, Turck FSP949, M20x1.5 / 7/8".
 - Not applicable with 5.sign "H" and "P".

- **P2P**
 - ND9000P and ND9000P/06 (PROFIBUS PA): Connection plug male, Weidmüller 842593, M20x1.5 / M12.
 - Not applicable with 5.sign "H" and "F".

- **P3P**
 - ND9000P and ND9000P/06 (PROFIBUS PA): Connection plug male manifold, Turck FSP948, M20x1.5 / 7/8".
 - Not applicable with 5.sign "H" and "F".

DRIVER SETS

- Driver sets including the needed parts when assembling ND9000 on rotary actuators with VDI/VDE 3845 attachment face or Neles standard mounting faces. Select the correct driver set according to the actuator and the pneumatic connections of valve controller or gauge block when applicable.

- Note! Earlier the DS04 was delivered with basehaft positioners as default. This practice is no longer valid, the needed driver set must be ordered as an accessory.

- **DS01**
 - Driver set for ND9100 on actuators with VDI/VDE 3845 attachment face.
 - Set includes the G1/4 plug for single acting actuators. The driver set should also be applied with all ND91 with gauge blocks A1, A1B, A2 or A6.

- **DS02**
 - Driver set for ND92/93/94 on actuators with VDI/VDE 3845 attachment face set.
 - Set includes the 1/4ANPT plug for single acting actuators. The driver set should also be applied with all ND with gauge blocks A3, A3B, A5, A7 or A10.

- **DS04**
 - General driver set for ND91/92/93/94/99 actuator with VDI/ VDE 3845 and Neles standard attachment face (e.g. when replacing NE/NP7 or ND800 with S2 shaft). Earlier default driver set.
 - Includes 1/4ANPT and G1/4 plugs when used with single acting actuators.

3RD PARTY MOUNTING SETS

- Mounting sets between the ND9000 generation valve controllers and linear actuators, including bracket and ball joint based feedback system.

- Note! Sets are including the pneumatic plugs needed when used with single acting actuators.

- Note! All available mounting sets listed in http://www2.stonel.com/ utilities/metso/mkdbase_open.htm

REMOTE MOUNTING ACCESSORIES

- **RC01**
 - H144183 Cable assembly remote mount sensor cable 30 m.

- **RC02**
 - H126145 Cable assembly remote mount sensor cable 30 m.

- **RC03**
 - H127093 Cable assembly remote mount sensor cable 30 m.