Table of Contents

1 ND9000 PRODUCT FAMILY SUMMARY 3
 1.1 Key features................................. 3

2 ND9100H INTELLIGENT VALVE CONTROLLER WITH HART COMMUNICATION 4
 2.1 General... 4
 2.2 Technical description.......................... 4
 2.3 Markings.. 4
 2.4 Technical specifications........................ 5
 2.5 Recycling and disposal......................... 6
 2.6 Safety precautions.............................. 6

3 TRANSPORTATION, RECEPTION AND STORAGE .. 6

4 MOUNTING.. 7
 4.1 General... 7
 4.2 Mounting on EC and EJ actuators.............. 7
 4.3 Mounting on Metso Automation actuators with VDI/VDE mounting face............ 7
 4.4 Mounting on linear actuator of nelesCV Globe.................................. 8
 4.5 Mounting on linear actuator with IEC 60534 mounting face......................... 8
 4.6 Piping... 9
 4.7 Electrical connections.......................... 12

5 LOCAL USER INTERFACE (LUI)......................... 13
 5.1 Measurement monitoring.......................... 13
 5.2 Guided start-up.................................... 13
 5.3 Configuration menu................................ 14
 5.4 Mode menu.. 14
 5.5 Configuration parameters 15
 5.6 Valve travel calibration........................ 17
 5.7 Special displays.................................. 18
 5.8 HART write protection........................... 19

6 MAINTENANCE... 19
 6.1 Prestage... 19
 6.2 Spool valve assembly............................. 19
 6.3 Communication circuit board..................... 20

7 ERROR MESSAGES................................. 20
 7.1 Failsafe errors................................... 20
 7.2 Alarms.. 20
 7.3 Errors.. 21
 7.4 Warnings.. 21
 7.5 Notifications.................................... 22

8 TROUBLE SHOOTING.................................. 22
 9 ND9100H/K00, ND9100H/I00
 (WITH LIMIT SWITCHES)............................... 23
 9.1 Introduction..................................... 23
 9.2 Installing ND9100H/K00 or ND9100H/I00
 on a valve controller......................... 24
 9.3 Electrical connections........................ 24
 9.4 Adjustment....................................... 24
 9.5 Removal of the limit switches
 ND9100H/K00 and ND9100H/I00
 for accessing the valve controller....... 24
 9.6 Circuit diagrams............................... 24
 9.7 Maintenance..................................... 24

10 TOOLS.. 24

11 ORDERING SPARE PARTS.............................. 24

12 DRAWINGS AND PARTS LISTS.......................... 25
 12.1 Exploded view and parts list, ND9100H........ 25
 12.2 Exploded view and parts list,
 ND9100H/K00 and ND9100H/I00............. 26
 12.3 Mounting parts for E_05-14 actuators, rising signal opens valve............. 27
 12.4 Mounting parts for B1C/B1J6-20
 actuators... 27
 12.5 Mounting parts for B1C/B1J25-50,
 B1C502 and B1J322 actuators.............. 28
 12.6 Mounting parts for Quadra-Powr®
 actuators.. 28
 12.7 Mounting parts for linear actuators of nelesCV Globe........................... 29
 12.8 Mounting parts for linear actuators with IEC 60534 mounting face............. 30
 12.9 Connection diagrams............................. 31

13 DIMENSIONS.. 35

14 EC DECLARATION OF CONFORMITY....................... 36

15 TYPE CODING.. 37

READ THESE INSTRUCTIONS FIRST!
These instructions provide information about the safe handling and operation of the intelligent valve controller.
If you require additional assistance, please contact the manufacturer or manufacturer’s representative.
Addresses and phone numbers are printed on the back cover.
SAVE THESE INSTRUCTIONS!

Subject to change without notice.
All trademarks are property of their respective owners.
ND9000 PRODUCT FAMILY SUMMARY

1.1 Key features
- Benchmark control performance on rotary and linear valves
- Reliable and robust design
- Ease of use
- Language selection: English, German and French
- Local / remote operation
- Expandable architecture
- Advanced device diagnostics including
 - Self-diagnostics
 - Online diagnostics
 - Performance diagnostics
 - Communication diagnostics
 - Extended off-line tests
 - Intelligent Valve Diamond

1.1.1 Options
- Interchangeable communication options:
 - HART
 - FOUNDATION Fieldbus
 - Profibus PA
- Limit switches
- Position transmitter (in HART only)
- Special corrosion resistant finish
- Exhaust adapter

1.1.2 Total cost of ownership
- Low energy and air consumption
- Future proof design allows further options at a reduced cost
- Optimised spares program. Reduced number of spares
- Retro-fit to existing installations (Neles or 3rd party)

1.1.3 Minimised process variability
- Linearisation of the valve flow characteristics
- Excellent dynamic and static control performance
- High-speed of response
- Accurate internal measurements

1.1.4 Easy installation and configuration
- Same unit for linear and rotary valves, double and single-acting actuators
- Simple calibration and configuration
 - using Local User Interface
 - using FieldCare software in a remote location
- Flush mounting capability to avoid tubing and mounting parts
- Low power design enables installation to all common control systems

1.1.5 Open solution
Metso is committed to delivering products that freely interface with software and hardware from a variety of manufacturers; and the ND9000 is no exception. This open architecture allows the ND9000 to be integrated with other field devices to give an unprecedented level of controllability.
- FDT based multi-vendor support configuration. ND9000 DTM download page: www.metsoautomation.com/nd9000

1.1.6 ND9000 in fieldbus networks
- Approved interoperability
- Host interoperability ensured

1.1.7 ND9000 mounting on actuators and valves
- Mounted on single and double acting actuators
- Both rotary and linear valves
- Flush mounting capability
- Ability to attach options to electronics and mechanics later
- Possibility to mount also on valves that are in process with 1-point calibration feature

1.1.8 Product reliability
- Designed to operate in harsh environmental conditions
- Rugged modular design
- Excellent temperature characteristics
- Vibration and impact tolerant
- IP66 enclosure
- Protected against humidity
- Maintenance free operation
- Resistant to dirty air
- Wear resistant and sealed components
- Contactless position measurement

1.1.9 Predictive maintenance
- Easy access to collected data with FieldCare software
- Ingenious Valve Diamond to visualise control valve performance and diagnostics
- Logical trend and histogram collection
- Information collected on service conditions
- Extensive set of off-line tests with accurate key figure calculations
- Fast notifications using on-line alarms
- Condition monitoring tool available
- Real time monitoring of valve control parameters
2 ND9100H INTELLIGENT VALVE CONTROLLER WITH HART COMMUNICATION

2.1 General

This manual incorporates Installation, Maintenance and Operation Instructions for the Metso Automation ND9100H intelligent valve controller. The ND9100H may be used with either cylinder or diaphragm type pneumatic actuators for rotary or linear valves.

NOTE:
The selection and use of the valve controller in a specific application requires close consideration of detailed aspects. Due to the nature of the product, this manual cannot cover all the likely situations that may occur when installing, using or servicing the valve controller.

If you are uncertain about the use of the controller or its suitability for your intended use, please contact Metso Automation for more information.

2.2 Technical description

The ND9100H is a 4–20 mA loop-powered microcontroller-based intelligent valve controller. The device operates even at 3.6 mA input signal and communicates via HART. The device contains a Local User Interface enabling local configuration. A PC with FieldCare software can be connected to the ND9100H itself or to the control loop.

The powerful 32-bit microcontroller controls the valve position. The measurements include:

- Input signal
- Valve position with contactless sensor
- Actuator pressures, 2 independent measurements
- Supply pressure
- Spool valve position
- Device temperature

Advanced self-diagnostics guarantees that all measurements operate correctly. Failure of one measurement does not cause the valve to fail if the input signal and position measurements are operating correctly. After connections of electric signal and pneumatic supply the micro controller (µC) reads the input signal, position sensor (α), pressure sensors (Ps, P1, P2) and spool position sensor (SPS). A difference between input signal and position sensor (α) measurement is detected by the control algorithm inside the µC. The µC calculates a new value for prestage (PR) coil current based on the information from the input signal and from the sensors. Changed current to the PR changes the pilot pressure to the spool valve. Reduced pilot pressure moves the spool and the actuator pressures change accordingly. The spool opens the flow to the driving side of the double diaphragm actuator and opens the flow out from the other side of the actuator. The increasing pressure will move the diaphragm piston. The actuator and feedback shaft rotate clockwise. The position sensor (α) measures the rotation for the µC. The µC using control algorithm modulates the PR-current from the steady state value until a new position of the actuator according to the input signal is reached.

2.3 Markings

The valve controller is equipped with an identification plate sticker (Fig. 2).

Identification plate markings from top to bottom include:

- Type designation of the valve controller
- Revision number
- Enclosure class
- Operational temperature
- Input signal (voltage range)
- Input resistance
- Maximum supply voltage
- Supply pressure range
- Contact details of the manufacturer
- CE mark
- Manufacturing serial number TTYYWWNNNN*)

*) Manufacturing serial number explained:

- TT = device and factory sign
- YY = year of manufacturing
- WW = week of manufacturing
- NNNN = consecutive number

Example: PH08011234 = controller, year 2008, week 1, consecutive number 1234.
2.4 Technical specifications
ND9100H INTELLIGENT VALVE CONTROLLER

General
Loop powered, no external power supply required. Suitable for rotary and sliding-stem valves. Actuator connections in accordance with VDI/VDE 3845 and IEC 60534-6 standards. Flush mounting on nelesCV™ control valves.

Action: Double or single acting
Travel range: Linear; 10–120 mm with standard IEC parts.
Larger strokes possible with suitable kits
Rotary; 45–95°.
Measurement range 110° with freely rotating feedback shaft.

Environmental influence
Standard temperature range:
-40° to +85 °C / -40° to +185 °F
Influence of temperature on valve position:
< 0.5 % / 10 °K
Influence of vibration on valve position:
< 1 % under 2g 5–150 Hz,
1g 150–300 Hz, 0.5g 300–2000 Hz

Enclosure
Material: Anodised aluminium alloy and polymer composite
Protection class: IP66, NEMA 4X
Pneumatic ports: G 1/4
Electrical connection: max 2.5 mm²
Cable gland thread: M20 x 1.5
Weight: 1.8 kg / 4.0 lbs
Mechanical and digital position indicator visible through the main cover
Special corrosion resistant finish available

Pneumatics
Supply pressure: 1.4–8 bar / 20–115 psi
Effect of supply pressure on valve position:
<0.1 % at 10 % difference in inlet pressure
Air quality: According to ISO 8573-1:2001
Solid particles: Class 5
(3–5 µm filtration is recommended)
Humidity: Class 1
(dew point 10 °C/50 °F below minimum temperature is recommended)
Oil class: 3 (or <1 ppm)
Capacity with 4 bar / 60 psi supply:
5.5 Nm³/h / 3.3 scfm (spool valve 2)
12 Nm³/h / 7.1 scfm (spool valve 3)
38 Nm³/h / 22.4 scfm (spool valve 6)
Consumption with 4 bar / 60 psi supply in steady state position:
<0.6 Nm³/h / 0.35 scfm (spool valves 2 & 3)
<1.0 Nm³/h / 0.6 scfm (spool valve 6)

Electronics
Supply power: Loop powered, 4–20 mA
Minimum signal: 3.6 mA
Current max : 120 mA
Load voltage: up to 9.5 V DC/20 mA (corresponding 475 Ω)
Voltage: max 30 V DC
Polarity protection: -30 V DC
Over current protection:
active over 35 mA
EEx ia IIC T6: Ui ≤ 28 V
li ≤ 120 mA
Pi ≤ 1 W
Ci = 22 nF
Li = 53 µH
(ATEX approval is valid under these conditions)
Performance with moderate constant-load, actuators EC05-EC10
Values at 20 °C / 68 °F and without any additional instruments, such as boosters or quick exhaust valves etc.
Dead band acc. to IEC 61514:
< 0.1 %
Hysteresis acc. to IEC 61514:
< 0.5 %

Local user interface functions
❑ Local control of the valve
❑ Monitoring of valve position, input signal, temperature, supply and actuator pressure difference
❑ Guided start-up function
❑ LUI may be locked remotely to prevent unauthorised access
❑ Calibration: Automatic/Manual
❑ 1-point calibration
❑ Control configuration: aggressive, fast, optimum, stable, maximum stability
❑ Mode selection: Automatic/Manual
❑ Rotation: valve rotation clockwise or counterclockwise to close
❑ Dead angle
❑ Low cut-off, cut-off safety range (default 2 %)
❑ Positioner fail action, open/close
❑ Signal direction: Direct/reverse acting
❑ Actuator type, double/single acting
❑ Valve type, rotary/linear IEC/nelesCV Globe/FLI
❑ Language selection: English, German and French

Approvals
Intrinsically safe and non incendive

ATEX
EC-Directive 94/9/EC;
EN 50014
EN 50020: 2 G EEx ia IIC T4...T6
EN 50284: 1 G EEx ia IIC T4...T6
EN50021: 3 G EEx nA II T4...T6
EN 50281-1-1: D T90 °C

CSA
CAN/CSA-C22.2-0,-142, -157;
CAN/CSA-EN60079-0,-11, -15
IS Class I, Div 1, Groups A, B, C, D T4...T6
IS Class I, Zone 0, Ex ia IIC T4...T6
NI Class I, Div 2, Groups A, B, C, D T4...T6

FM
FM Class 3600, 3610, 3611, 3810:
IS Class I, Div 1, Groups A, B, C, D T4...T6
IS Class I, Zone 0, AEx ia IIC T4...T6
NI Class I, Div 2, Groups A, B, C, D T4...T6
NI Class I, Zone 2, Ex nA II T4...T6
Electromagnetic Protection

Electromagnetic compatibility
Immunity acc. to EN 61000-6-2 (2001)

CE Marking

89/336/EEC
Electromagnetic compatibility

94/9/EC
ATEX (when applicable)

POSITION TRANSMITTER (optional)

Output signal: 4–20 mA (galvanic isolation; 600 V DC)
Supply voltage: 12 - 30 V
Resolution: 16 bit / 0.244 µA
Linearity: <0.05 % FS
Temperature effect: <0.35 % FS
External load: max 0–780 Ω
 max 0–690 Ω for intrinsically safe

EEx ia IIC T6
Ui ≤ 28 V
li ≤ 120 mA
Rx = 0–690 Ω
Pi ≤ 1 W
Ci = 22 nF
Li = 53 µH

PROXIMITY SENSORS AND MICRO SWITCHES, 2 PIECES
(Optional with extension module)

Code I02 P+F NJ2-12GK-SN
Code I07 P+F NJ2-12GM-N
Code I56 IFC 2002-ARKG/UP
Code K05 Omron D2VW-5, micro switch
Code K06 Omron D2VW-01 gold plated, micro switch

2.5 Recycling and disposal

Most valve controller parts can be recycled if sorted according to material.

Most parts have material marking. A material list is supplied with the valve controller. In addition, separate recycling and disposal instructions are available from the manufacturer.

A valve controller may also be returned to the manufacturer for recycling and disposal. There will be a charge for this.

2.6 Safety precautions

CAUTION:
Do not exceed the permitted values!
Exceeding the permitted values marked on the valve controller may cause damage to the controller and to equipment attached to the controller and could lead to uncontrolled pressure release in the worst case. Damage to the equipment and personal injury may result.

WARNING:
During automatic or manual calibration and tuning the valve operates between open and closed positions. Make sure that the operation does not endanger people or processes!

WARNING:
Do not operate the device with electronics cover (39) removed!
Electromagnetic immunity is reduced, valve may stroke. Explosion protection may be impaired.

Intrinsic Safety (Ex i) WARNING:
Ensure that the complete installation and wiring is intrinsically safe before operating the device!
The equipment must be connected via a certified Zener barrier placed outside the hazardous area.

ATEX WARNING:
Electrostatic charge hazard!
The pointer and display windows are non-conductive. Clean with a damp cloth only!

Spark hazard!
Protect the aluminium housing from impacts and friction!

ATEX WARNING:
For use in the presence of combustible dust.
Ignition protection relies on the enclosure. Protect the cover of the valve controller from impacts. When temperature is higher than 70 °C the temperature rating of the cable shall be higher than the temperature.

NOTE:
Avoid earthing a welding machine in close proximity to an ND9100H valve controller. Damage to the equipment may result.

3 TRANSPORTATION, RECEIPTION AND STORAGE

The valve controller is a sophisticated instrument, handle it with care.

☐ Check the controller for any damage that may have occurred during transportation.
☐ Store the uninstall controller preferably indoors, keep it away from rain and dust.
☐ Do not unpack the device until installing it.
☐ Do not drop or knock the controller.
☐ Keep the flow ports and cable glands plugged until installing.
☐ Follow instructions elsewhere in this manual.
4 MOUNTING

4.1 General

NOTE:
The enclosure of ND9100H intelligent valve controller meets the IP66 protection class according to EN 60529 in any position when the cable entry is plugged according to IP66.
Based on good mounting practice, the recommended mounting position is electrical connections placed downwards. This recommendation is shown in our mounting position coding for control valves.
If these requirements are not fulfilled, and the cable gland is leaking and the leakage is damaging valve controller or other electrical instrumentation, our warranty is not valid.

If the ND9100H is supplied with valve and actuator, the tubes are mounted and the ND9100H adjusted in accordance with the customer’s specifications. If the controller is ordered separately, the mounting parts for the assembly must be ordered at the same time.

Sample order: (B1CU13)-Z-ND9106HN

The controller is equipped with the Metso Automation flush mounting face, the old Neles mounting face and for connection according to VDI/VDE 3845.

Shaft coupling alternatives for the controller for Metso Automation actuators are shown in Fig. 5.

For mounting parts for Metso Automation actuators, see 12.3 - 12.7.

4.2 Mounting on EC and EJ actuators

See figure in Section 12.3.

- Mount the U-shaped coupling (47) to the shaft. Apply thread-locking compound to the screws (48) and tighten firmly.
- Remove all protective plastic plugs (5 pcs.) from all pneumatic connections. Mount the metal plugs (53) to the unused controller connections with sealant.
 For EJ (single acting, spring to close) and EJA (single acting, spring to open) actuators, mount a metal plug (54) with sealant to the C1 connection at the bottom of the controller.
- Mount the O-rings (38, 2 pcs.) into the air connections in the bottom of the controller.
- Mount the O-ring (49) into the square groove in the bottom of the controller.
- Place the valve controller on top of the actuator so that the pointer of the shaft washer (16) is located in the position shown in Fig. 5.
- Fasten the screws (4).

4.3 Mounting on Metso Automation actuators with VDI/VDE mounting face

See figures in Section 12.4 -12.6.

- Mount the H-shaped coupling (47) to the shaft. Apply thread-locking compound to the screw (48) and tighten firmly.
- Remove all protective plastic plugs from the pneumatic connections (5 pcs.). Mount the metal plugs (54) with sealant to the unused controller connections at the bottom of the controller.
- BJ and other single acting actuators: mount a metal plug (53) with sealant to the C1 connection.
- Set the direction arrow of the actuator in the direction of the valve closure member and attach the ear (2) to the indicator cover in the position shown in Section 12.4. Secure the screw of the ear using e.g. Loctite and tighten firmly.
- Attach the bracket (1) to the ND9100H.
- Attach the bracket (1) to the actuator. The shaft coupling of the ND9100H must fit into the ear (2) so that the pointer of the shaft washer (16) is located in the position shown in Fig. 5.
4.4 Mounting on linear actuator of nelesCV Globe

See figure in Section 12.7.

- Attach the J-shaped feedback lever (47) to the valve controller shaft. Apply the thread-locking compound to the screws and tighten firmly.
- Remove all plastic plugs from all actuator connections (5 pcs.). Mount the metal plugs (53) to the unused controller connections with sealant.
- Mount the metal plug (54) with sealant to the connection C1 at the bottom of the controller and mount the O-rings (38, 2 pcs.) to the connections.
- Attach the mounting plate (39) to the valve controller with screws (28).
- Mount the the conical plug (16) to the lever and select the position on the scale according to the valve stroke.
- Install the O-ring (31) to the actuator. Place the conical plug into the frame on the stem and tighten the screws (4).

4.5 Mounting on linear actuator with IEC 60534 mounting face

See figure in Section 12.8

- Attach the feedback arm with spacer to the valve controller shaft. Note the position of the mark on the shaft as in 12.8. Apply thread locking compound to the screws and tighten firmly. Attach the spring to the feedback arm as shown in Section 12.8.
- Mount the valve controller mounting bracket loosely to the yoke of the actuator.

Remove all plastic plugs from all actuator connections (5 pcs.). Mount the metal plugs (54) with sealant to the unused controller connections at the bottom of the controller.
- Mount the valve controller loosely to the mounting bracket guiding the pin on the actuator stem to the slot of the feedback arm.
- Align the bracket and the valve controller with the actuator stem and adjust their position so that the feedback arm is approximately at a 90° angle to the actuator stem (in the mid-stroke position).
- Tighten the valve controller mounting bracket screws.
- Adjust the distance of the valve controller to the pin on the actuator stem so that the pin stays in the lever slot at full stroke. Ensure also that the maximum angle of the lever does not exceed 45° in either direction. Maximum allowed travel of the lever is shown in Section 12.8. Best control performance is achieved when the feedback lever utilises the maximum allowed angle (±45° from horizontal position). The whole range should be at least 45°.
- Make sure that the valve controller is in right angle and tighten all the mounting bolts.
- Ensure that the valve controller complies with previous steps. Check that the actuator pin does not touch the valve controller case throughout the entire stroke of the actuator. If the actuator pin is too long it may be cut to size.
- Apply grease (Molykote or equivalent) to the contact surfaces of the actuator pin and the feedback arm to reduce wear.

![Fig. 5 Shaft coupling alternatives](image-url)
4.6 Piping

CAUTION:
Do not exceed the permitted supply pressure of the ND9100H!

Table 2 provides the recommended tube sizes in accordance with actuator sizes. Tube sizes are the minimum values allowed. Operating times may be tested by the FieldCare software.

Connect the air supply to S (G1/4).

Connect C1 and C2 (G1/4) to the actuator, see Fig. 6.

ND9100H is connected direct to the EC or EJ actuator. Connections C1 and C2 (G1/4) must be plugged, see 12.3.

Liquid sealants, such as Loctite 577 are recommended for the pipe threads.

NOTE:
A valve controller mounted on a spring actuator must be connected only as single-acting. See Fig. 6.

NOTE:
An excess of sealant may result in faulty operation of the controller. Sealing tape is not recommended. Ensure that the air piping is clean.

The air supply must be clean, dry and oil-free instrument air, see Section 2.4.

Table 1 Spring rates

<table>
<thead>
<tr>
<th>Actuator type</th>
<th>Spring rate (bar/psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1JK</td>
<td>3 / 43</td>
</tr>
<tr>
<td>B1J</td>
<td>4.2 / 61</td>
</tr>
<tr>
<td>B1JV</td>
<td>5.5 / 80</td>
</tr>
<tr>
<td>QPB</td>
<td>3 / 43</td>
</tr>
<tr>
<td>QPC</td>
<td>4.3 / 62</td>
</tr>
<tr>
<td>QPD</td>
<td>5.6 / 81</td>
</tr>
<tr>
<td>EJK</td>
<td>3 / 43</td>
</tr>
<tr>
<td>EJ</td>
<td>4 / 57</td>
</tr>
<tr>
<td>EJV</td>
<td>5 / 72</td>
</tr>
</tbody>
</table>

Adjust regulator pressure to a level that is max 1 bar (14.5 psi) + spring rate.
<table>
<thead>
<tr>
<th>EC</th>
<th>Stroke vol. dm³ / in³</th>
<th>G</th>
<th>6</th>
<th>10</th>
<th>1/4</th>
<th>3/8</th>
<th>Spool valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td>0.09 / 5</td>
<td>1/4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>0.2 / 12</td>
<td>1/4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.5 / 31</td>
<td>1/4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>2, 3*</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1.2 / 73</td>
<td>1/4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3.0 / 183</td>
<td>1/4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>7.7 / 470</td>
<td>3/8</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>20.5 / 1250</td>
<td>3/8</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

EJ

<table>
<thead>
<tr>
<th>Stroke vol. dm³ / in³</th>
<th>G</th>
<th>6</th>
<th>10</th>
<th>1/4</th>
<th>3/8</th>
<th>Spool valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td>0.18 / 11</td>
<td>1/4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>2</td>
</tr>
<tr>
<td>07</td>
<td>0.4 / 24</td>
<td>1/4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>2, 3*</td>
</tr>
<tr>
<td>10</td>
<td>1 / 61</td>
<td>1/4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>2.4 / 145</td>
<td>1/4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>6 / 366</td>
<td>1/4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>6</td>
</tr>
<tr>
<td>16</td>
<td>15 / 915</td>
<td>3/8</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>6</td>
</tr>
<tr>
<td>25</td>
<td>41 / 2500</td>
<td>3/8</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>6</td>
</tr>
</tbody>
</table>

B1C

<table>
<thead>
<tr>
<th>Stroke vol. dm³ / in³</th>
<th>NPT</th>
<th>6</th>
<th>10</th>
<th>1/4</th>
<th>3/8</th>
<th>Spool valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.3 / 18</td>
<td>1/4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>2, 3*</td>
</tr>
<tr>
<td>9</td>
<td>0.6 / 37</td>
<td>1/4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>2, 3*</td>
</tr>
<tr>
<td>11</td>
<td>1.1 / 67</td>
<td>3/8</td>
<td>(x)</td>
<td>x</td>
<td>(x)</td>
<td>x</td>
</tr>
<tr>
<td>13</td>
<td>2.3 / 140</td>
<td>3/8</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>4.3 / 262</td>
<td>1/2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>6</td>
</tr>
<tr>
<td>20</td>
<td>5.4 / 330</td>
<td>1/2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>6</td>
</tr>
<tr>
<td>25</td>
<td>10.5 / 610</td>
<td>1/2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>6</td>
</tr>
<tr>
<td>32</td>
<td>21 / 1282</td>
<td>3/4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>6</td>
</tr>
<tr>
<td>40</td>
<td>43 / 2624</td>
<td>3/4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>6</td>
</tr>
<tr>
<td>50</td>
<td>84 / 5126</td>
<td>1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>6</td>
</tr>
<tr>
<td>502</td>
<td>195 / 11900</td>
<td>1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>6</td>
</tr>
</tbody>
</table>

B1JA

<table>
<thead>
<tr>
<th>Stroke vol. NPT dm³ / in³</th>
<th>6</th>
<th>10</th>
<th>1/4</th>
<th>3/8</th>
<th>Spool valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0.9 / 55</td>
<td>3/8</td>
<td>(x)</td>
<td>x</td>
<td>(x)</td>
</tr>
<tr>
<td>10</td>
<td>1.8 / 110</td>
<td>3/8</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>12</td>
<td>3.6 / 220</td>
<td>1/2</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>16</td>
<td>6.7 / 409</td>
<td>1/2</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>20</td>
<td>13 / 793</td>
<td>3/4</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>25</td>
<td>27 / 1648</td>
<td>3/4</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>32</td>
<td>53 / 3234</td>
<td>1</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>322</td>
<td>106 / 6468</td>
<td>1</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

QP

<table>
<thead>
<tr>
<th>Stroke vol. NPT dm³ / in³</th>
<th>6</th>
<th>10</th>
<th>1/4</th>
<th>3/8</th>
<th>Spool valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.62 / 37</td>
<td>3/8</td>
<td>(x)</td>
<td>x</td>
<td>(x)</td>
</tr>
<tr>
<td>2</td>
<td>1.08 / 66</td>
<td>3/8</td>
<td>(x)</td>
<td>x</td>
<td>(x)</td>
</tr>
<tr>
<td>3</td>
<td>2.18 / 133</td>
<td>3/8</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>4</td>
<td>4.34 / 265</td>
<td>3/8</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>5</td>
<td>8.7 / 531</td>
<td>3/8</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>6</td>
<td>17.5 / 1068</td>
<td>3/4</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Air supply piping 10 mm or 3/8" for all actuators.

Pipe sizes are nominal, i.e. approximately outer diameter. Inner diameter is typically 2 mm smaller.
x = Standard pipe size used in Neles control valves.
(x) = Minimum pipe size (if smaller than standard).
*) Spool size 2 is preferred for accurate control and standard for Neles control valves.
Spool size 3 can be used if fast full stroke times are required.
Fig. 6 Operation directions and air connections

DOUBLE-ACTING ACTUATOR
1. Increasing input signal to open valve (shown)
 Default setting:
 DIR = OPE
 ROT = cC (close valve to clockwise)
 ATYP = 2-A
 PFA = CLO
 A0, CUTL and VTYP according to valve type

2. Increasing input signal to close valve (not recommended)
 Default setting:
 DIR = CLO
 ROT = cC (close valve to clockwise)
 ATYP = 2-A
 PFA = CLO
 A0, CUTL and VTYP according to valve type

DOUBLE-ACTING ACTUATOR, REVERSED PIPING
3. Increasing input signal to open valve (not recommended)
 Default setting:
 DIR = OPE
 ROT = cC (close valve to clockwise)
 ATYP = 2-A
 PFA = OPE
 A0, CUTL and VTYP according to valve type

4. Increasing input signal to close valve (shown)
 Default setting:
 DIR = CLO
 ROT = cC (close valve to clockwise)
 ATYP = 2-A
 PFA = OPE
 A0, CUTL and VTYP according to valve type

SINGLE-ACTING ACTUATOR, SPRING TO CLOSE
5. Increasing input signal to open valve (shown)
 Default setting:
 DIR = OPE
 ROT = cC (close valve to clockwise)
 ATYP = 1-A
 PFA = CLO (must be in the spring direction)
 A0, CUTL and VTYP according to valve type

6. Increasing input signal to close valve (not recommended)
 Default setting:
 DIR = CLO
 ROT = cC (close valve to clockwise)
 ATYP = 1-A
 PFA = CLO (must be in the spring direction)
 A0, CUTL and VTYP according to valve type

SINGLE-ACTING ACTUATOR, SPRING TO OPEN
7. Increasing input signal to close valve (shown)
 Default setting:
 DIR = CLO
 ROT = cC (close valve to clockwise)
 ATYP = 1-A
 PFA = CLO (must be in the spring direction)
 A0, CUTL and VTYP according to valve type

8. Increasing input signal to open valve (not recommended)
 Default setting:
 DIR = OPE
 ROT = cC (close valve to clockwise)
 ATYP = 1-A
 PFA = OPE (must be in the spring direction)
 A0, CUTL and VTYP according to valve type
4.7 Electrical connections

The ND9100H is powered by a standard 4–20 mA current loop that also functions as a carrier to the HART communication.

The input signal cable is led through a M20 x 1.5 cable gland. Connect the conductors to the terminal strip as shown in Fig. 7. It is recommended that the earthing of the input cable shield be carried out from the DCS end only.

The position transmitter is connected to 2-pole terminal PT as shown in Fig. 7. The position transmitter needs an external power supply. The ND9100H and the position transmitter circuits are galvanically isolated and withstand a 600 V AC voltage.

Please note following before mounting the cover of the valve controller:

- Attach the LUI (223) cabling to the sticker on the reverse side of the LUI. Check that the cabling does not get squeezed by the electronics cover (39) or the device cover (100).
- Check using a feeler gauge that the clearance between the position indicator (109) and the electronics cover is 1 mm.

NOTE:
The ND9100H equals a load of 475 Ω in the current loop.
5 LOCAL USER INTERFACE (LUI)

The local user interface may be used to monitor the device behaviour as well as configuring and commissioning the controller during installation and normal operation. The local user interface consists of 2 row LCD and 4 button keypad interface. There are also custom graphical characters for special conditions.

5.1 Measurement monitoring

When the device is powered, it enters the measurement monitoring view. The following measurements may be viewed from the display. The Table 3 identifies the default unit and also optional unit of the measurement.

Table 3 Default / optional units of measurements

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Default unit</th>
<th>Optional unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>valve position</td>
<td>Percentage of full</td>
<td>Angle, where 0 %</td>
</tr>
<tr>
<td></td>
<td>scale</td>
<td>refers to 0 (angle)</td>
</tr>
<tr>
<td>target position</td>
<td>Percentage of full</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>scale</td>
<td></td>
</tr>
<tr>
<td>current loop</td>
<td>mA</td>
<td>Percentage of full</td>
</tr>
<tr>
<td>setpoint</td>
<td>scale</td>
<td>scale</td>
</tr>
<tr>
<td>actuator</td>
<td>bar</td>
<td>psi</td>
</tr>
<tr>
<td>pressure difference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>supply pressure</td>
<td>bar</td>
<td>psi</td>
</tr>
<tr>
<td>device temperature</td>
<td>°Celsius</td>
<td>°Fahrenheit</td>
</tr>
</tbody>
</table>

If the unit selection is altered from the FieldCare software to US units, the pressure default unit will automatically be changed to psi and temperature unit to Fahrenheit.

The active unit may be changed by pressing the key constantly. The display shows the current unit selection on the top row of the display. You may change the selection by pressing or while keeping the key pressed down. When the buttons are released the current selection will be activated.

If the device has been idle for 1 hour, and there is no user activity on the local user interface, the measurements will start scrolling on the display. This enables the user to view all the measurements through the window of the main cover.

Fig. 9 Local user interface (LUI)

5.2 Guided start-up

Guided startup offers a fast view of the most critical parameters of the ND9100H controller, actuator and valve configuration. After verifying the parameters the valve travel calibration is recommended. The guided start-up is entered by pressing the and keys simultaneously.

The configuration parameters are listed in following order, see explanation from 5.5:

- Valve type VTYP
- Actuator type ATYP
- Positioner fail action PFA
- Valve rotation direction ROT
- Valve dead angle A0

If you modify any of the parameters you will also need to calibrate and tune the device. See 5.6 for detailed description.

Fig. 10 Measurement unit change

— continuous push
— brief push
5.3 Configuration menu

The local user interface is organised in a menu structure. To enter the menus press + and - simultaneously in the measurement monitoring view panel. To move to the next or previous selection by pressing + or - accordingly.

5.4 Mode menu

If the user wants to change the valve operating mode, press the ? key at the MODE selection. The mode will start to flash and by pressing + or - you may alter the operation mode selection. User accepts the current selection by pressing the ? key.

There are two options for the operating mode.

5.4.1 AUTO

During the auto mode, the controller controls the valve position according to the incoming setpoint signal from the 4–20 mA signal source. This mode is used during the normal process control service.

5.4.2 MAN

During this mode the valve position may be controlled manually by using the keyboard and pressing the + or - buttons. The position of the manually driven valve is not saved in the memory of the controller, i.e. the valve will not return to the same position after signal failure. However, the valve may be driven back into position after signal failure by using + and - keys. The manual control starts from the current position of the valve after the MAN-mode is activated. In order to change the manual setpoint return to the measurement monitoring view and go to target position measurement. Press the ? key shortly to activate the target position edition, text TPOS starts to blink and now you are able to edit the setpoint by pressing + or - buttons. The setpoint changes in 0.1 % increments/decrements in spite of the selected unit and the valve starts to move immediately. A continuous push changes the setpoint faster. In order to view other measurements, press the + or - keys and select a measurement. Repeat the previous steps if you would like to alter the setpoint value again.
5.5 Configuration parameters

When \textit{PRT} is on the display you may enter the configuration menu by pressing the \textit{S} key. In this menu the most important configuration and signal modification parameters are viewable. You may view the current value and edit them by pressing the \textit{S} key at the relevant parameter. The name of the parameter will appear on the upper row of the display and the current value is on the lower row.

5.5.1 Performance level, \textit{PERF}

If you want to change the tuning of the valve position control, the \textit{PERF} selection is available. The default factory value is \textit{C}.

- Once \textit{PERF} is displayed press the \textit{S} key to enter the edit state and \textit{PERF} starts to blink.
- Select between five values by pressing the \textit{S} or \textit{S} key.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Meaning</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{A}</td>
<td>Aggressive</td>
<td>Immediate response to signal changes, overshoots</td>
</tr>
<tr>
<td>\textit{B}</td>
<td>Fast</td>
<td>Fast response to signal changes, small overshooting</td>
</tr>
<tr>
<td>\textit{C}</td>
<td>Optimum</td>
<td>Very small overshoot with minimum step response time</td>
</tr>
<tr>
<td>\textit{D}</td>
<td>Stable</td>
<td>No overshoot, slow response to input signal changes</td>
</tr>
<tr>
<td>\textit{E}</td>
<td>Maximum stability</td>
<td>No overshoot, deadband may increase, slow but stable behaviour</td>
</tr>
</tbody>
</table>

For use with volume boosters and/or very fast actuators, additional performance levels \textit{A1} to \textit{D1} can be used. Characteristics of these extended levels are the same as those in the table above. However, with performance level settings \textit{A1} to \textit{D1}, adaptive properties of the ND9000 control algorithm are disabled.

- After the desired value is displayed, press the \textit{S} key to conclude the operation

5.5.2 Low cut-off, \textit{CUTL}

Low cut-off safety range \textit{CUTL} ensures the valve closing against mechanical travel stops. The factory default value is 2%.

- Once \textit{CUTL} is displayed press the \textit{S} key to enter the edit state and the \textit{CUTL} will start to blink. The currently selected value appears as a percentage (\textit{t}) on the display.

- Modify the parameter value by pressing \textit{S} or \textit{S} keys alternately until the desired value appears on the display.
- After the desired value is displayed, press the \textit{S} key to conclude the operation.

5.5.3 Signal direction, \textit{DIR}

The opening and closing direction of the valve with raising current loop signal is defined by signal direction parameter \textit{DIR}.

- When \textit{DIR} is displayed press the \textit{S} key to enter the edit state and \textit{DIR} starts to blink.
- Select either the \textit{OPE} or \textit{CLO} values by pressing the \textit{S} and \textit{S} keys. The value \textit{OPE} signifies the raising signal 4–20 mA to open the valve and \textit{CLO} means the raising signal to close the valve.
- To conclude, press the \textit{S} key when the desired value is shown on the display.

See default values in Fig. 6.

5.5.4 Valve type, \textit{VTYP}

To compensate for nonlinearity of the position feedback caused by the actuator linkage mechanism of a linear control valve, the appropriate selection must be made on the \textit{VTYP} display.

- After selecting \textit{VTYP} on the display, press the \textit{S} key to enter the edit state and the \textit{VTYP} starts to blink.
- Select between four values \textit{rot}, \textit{Lin}, \textit{nCG} or \textit{FlI} using the \textit{S} and \textit{S} keys. The value \textit{rot} indicates a rotary valve and \textit{Lin} a linear valve. Use \textit{nCG} only for nelesCV Globe valves to accommodate special linkage geometry. Use \textit{FlI} only for linear valves when linkage geometry is not needed to be corrected by valve controller firmware.
- To conclude press the \textit{S} key when the desired value is shown on the display.

NOTE: Perform valve calibration and tuning always when \textit{VTYP} has been changed.

5.5.5 Actuator type, \textit{ATYP}

In order to optimise the control performance the device needs to be informed about the actuator type.

- After selecting \textit{ATYP} on the display, press the \textit{S} key to enter the edit state and \textit{ATYP} starts to blink.
- Select between two values \textit{2-A} or \textit{1-R} using the \textit{S} and \textit{S} keys. The value \textit{2-A} indicates a double acting actuator and \textit{1-R} a single acting actuator.
- To conclude press the \textit{S} key when the desired value is shown on the display.

NOTE: Perform valve calibration and tuning always when \textit{ATYP} has been changed.
5.5.6 Positioner fail action, PFA

Positioner fail action will take place in case of signal failure or when the controller software discovers a fatal device failure. For single acting actuators set value in the spring direction. For double acting actuators see Fig. 6 for correct settings.

- Once PFA is displayed, press the key to enter the edit state and the PFA will start blinking.
- You may select between two values by pressing the or key. The value indicates that the valve ought to be closed in fail action situations. The value indicates the valve to be opened in fail action situations.
- After the desired value is displayed, press the key to conclude the operation.

NOTE: Perform valve calibration and tuning always when fail action parameter has been changed.

5.5.7 Valve rotation direction, ROT

The application-specific parameter ROT defines the relationship between position sensor rotation and valve action.

- Once ROT is displayed press the key to enter the edit state and ROT starts to blink.
- Now you may select between two values by pressing the or key. The value means clockwise rotation for closing the valve and means counterclockwise to close.
- After the desired value is displayed, press the key to conclude the operation.

NOTE: Perform valve calibration and tuning always when ROT has been changed.

5.5.8 Valve dead angle, A0

The \(\alpha_0 \) setting is made for Metso Automation segment and ball valves. This setting takes into account the "dead angle" \(\alpha_0 \) of the ball valves. The entire signal range is then used for effective valve opening 90° - \(\alpha_0 \). Use 0 % as the "dead angle" for the valves not mentioned in Table 5.

- After selecting A0 on the display, press the key to enter the edit state and A0 starts to blink.
- Modify the parameter value by pressing the or keys alternately until the desired value appears on the display.
- Press the key to make your selection and return to the setting state.

5.5.9 Low cut-off, low limit, high cut-off, high limit

ND9100H supports signal cut-off and limiting in both ends of the operating range. The configuration parameters are: low cut-off, low limit, high cut-off and high limit.

- If the input signal is smaller than low cut-off, the valve will be fully closed.
- If the input signal is smaller than low limit, the valve stays in the low limit.
- If the input signal is greater than high cut-off, the valve will be fully opened.
- If the input signal is greater than high limit, the valves stays in the high limit.

The cut-off overrides the limit as follows:
- If the low cut-off > low limit, the low limit is not active.
- If the low cut-off < low limit, both low cut-off and limit are active.
- If the low cut-off is set to zero, the low cut-off is not active.
- If the high cut-off < high limit, the high limit is not active.
- If the high cut-off > high limit, both high cut-off and limit are active.
- If the high cut-off is set to 100 %, the high cut-off is not active.

Only the low cut-off is adjustable using the LUI. Low limit, high cut-off and high limit are configurable via FieldCare software.

5.5.10 Language selection, LANG
- Select between three languages EnG, GEr, or FrE using the ▲ and ▼ keys.
- To conclude press the ▼ key when the desired value is shown on the display.

5.6 Valve travel calibration

NOTE:
If AUTO CAL or MAN CAL is selected, the valve controller must be in AUTO mode. 1-point calibration may run in both AUTO and MAN mode.

Select CAL from the menu by using ▲ or ▼ keys and press the ▼ key. Define the calibration type AUTO, MAN or TUNE. You may also select TUNE after AUTO and MAN calibration separately as seen in Fig.16.

Select CAL from the menu by using ▲ or ▼ keys and press the ▼ key. Define the calibration type AUTO, MAN or TUNE. You may also select TUNE after AUTO and MAN calibration separately as seen in Fig.16.

Fig. 16 Calibration selection

WARNING:
Automatic calibration drives the valve against the mechanical open and closed travel limits of the valve-actuator assembly and a tuning procedure is performed. Make sure that these procedures can be safely executed.

5.6.1 AUTO calibration function

During the calibration process the display will show the following text: CAL, CAL. After calibration the ND9100H scrolls CALIBRATION SUCCESSFUL text. You may interrupt the calibration sequences at any time by pressing the ▼ key.

After the calibration sequence is finished, press the ▼ key twice to get back to the measurement view.

Please refer to Chapter 7 if this sequence has failed and an error message is displayed.

If you cannot drive the valve into a fully open position or if there is no mechanical limit stop, a manual calibration is required.

5.6.2 MAN calibration function

After selecting the MAN calibration function from the menu press the ▼ key to activate the procedure. With the ▲ or ▼ keys drive the valve manually to the closed (0 %) position and then press the ▼ key. If you cancel the operation, the old values of the previous calibration will be restored. Drive the valve into the desired maximum opening position (100 %) with the ▲ and ▼ keys and press the ▼ key.

If this sequence has failed and an error message is shown, see Chapter 6.

5.6.3 TUNE function

During the tuning the ND9100H controller searches for optimum internal control parameters for the valve position control. At any time you may interrupt the tuning sequence by pressing the ▼ key. The tuning will not alter the PERF parameter.

If calibration and tuning are performed in sequence, the cancelling of tuning does not restore the old calibration values.

5.6.4 1-Point calibration

1-point calibration is useful in cases in which the valve controller needs to be changed but it is not possible to run the normal calibration and the valve is not allowed to change position (the valve is active, for example).

This procedure does not ensure the best possible control performance, and it is always recommended to run either AUTO or MAN calibration and tuning, as soon as possible. The primary way to calibrate valve position is to use either AUTO or MAN calibration.

Before starting 1-point calibration, read the warnings and notes below and check that the valve is mechanically locked. Before starting 1-point calibration, adjust the TPOS value in the MAN mode (see section 5.4.2) to correspond with the physical position of the valve.

Once the 1-point calibration is started, the first view shows RHIG above and LHIN below (see Fig. 16). LHIN presents the maximum turning angle (in degrees) that the valve can perform.

To change the value:
- Press ▼, LHIN begins blink
- Press ▲ and ▼ buttons to change the value

After the correct valve operation angle is set, press ▼ button.
During the calibration process the display will show the following text: CALRUN. After calibration the ND9100H scrolls CALIBRATION SUCCESSFUL text. You may interrupt the calibration sequences at any time by pressing the key.

After the calibration sequence is finished, press the key twice to get back to the measurement view.

Please refer to Chapter 7 if this sequence has failed and an error message is displayed.

The valve can be unlocked when the calibration is successfully finished.

WARNING:
Supply pressure can be connected to the valve controller only after 1-point calibration is successfully completed. If supply pressure is connected to the valve controller before successful 1-point calibration, the valve may move and cause danger.

NOTE:
If an incorrect valve operation angle is given to the valve controller during 1-point calibration, valve operation will be incorrect. In this case, you must perform 1-point calibration again with correct valve operation angle value.

NOTE:
If the valve position is not stable (due to heavy vibration etc) during 1-point calibration, the calibration will not end successfully. Check that the valve position is fully stable during this operation.

5.7 Special displays

5.7.1 User interface locked

In order to prevent unauthorised access, the Local User Interface may be locked. In this mode measurements may be viewed but configurations and calibrations are prohibited. You may lock and unlock the device only via HART. When the Local User Interface is locked the lock symbol will be activated on the display.

![Fig. 17 LUI locked](image1)

5.7.2 Online-alarm active

If an online alarm has been detected the solid symbol is activated. This symbol will disappear after the recovery from online alarm. You may view the reason for the alarm by viewing the latest event while pushing the and keys simultaneously or by using FieldCare software where all events may be viewed.

![Fig. 18 Online alarm message](image2)

Fig. 18 Online alarm message

5.7.3 Viewing of latest event

You may view the latest event by pressing the and keys simultaneously in the measurement monitoring view. The message is scrolled on the top row of the display twice. You may stop the scrolling by pressing the key. By pressing the key, the message will disappear.

For the list of events see Chapter 7.

5.7.4 Fail-safe active

When the ND9100H detects serious device failure (setpoint, valve position and control signals) it enters fail-safe mode, which drives the control valve into the position defined in the parameter controller fail action (PFA). Fail-safe mode is indicated by the display as seen in Fig. 19. The error message is displayed until the cause of error is eliminated and the ND9100H unit is restarted, i.e. the power loop is momentarily disconnected.

![Fig. 19 Failsafe display](image3)

Fig. 19 Failsafe display

5.7.5 Reduced performance

When the ND9100H detects spool valve measurement failure, it enters reduced performance mode. This is indicated by the blinking in the display, see Fig. 20.

In reduced performance mode valve control can not be optimized. To correct the problem replace the spool valve assembly and perform auto calibration.

![Fig. 20 Reduced performance display](image4)

Fig. 20 Reduced performance display
5.8 HART write protection
The ND9100H is delivered from the factory with the
default set as HART write protection OFF. Reading and
changing parameters is allowed. HART protection may
be enabled with a switch (DIP1) located on the commu-
ication circuit board under the Local User Interface
module, Fig. 21. Changes that may influence the valve
position cannot be made using the FieldCare software
or HART hand held when switch no. 1 (on the left-hand
side of the switch block) is ON.

6 MAINTENANCE
The maintenance requirements of the ND9100H valve
controller depend on the service conditions, for
instance, the quality of instrument air. Under normal
service conditions there is no requirement for regular
maintenance.

When maintaining the ND9100H ensure that the supply
air is shut off and pressure is released. In the following
text the numbers in brackets () correspond to the part
numbers in the exploded view as shown in Chapter 12,
unless otherwise stated.

The ND9100H valve controller includes the following
interchangeable modules: prestage unit (120), spool
valve unit with sensor (193) and communication circuit
board with optional position transmitter (215).

The modules are located below the covers (39) and
(43). In the event of failure the whole module must be
changed. The module retrofit must be assembled in a
clean, dry environment. In reassembly apply thread-
locking compound (for instance, Loctite 243) and
tighten the screws firmly.

NOTE:
Whenever any maintenance operations have been
done for the ND9100H, the device should be cali-
brated and tuned.

6.1 Prestage

NOTE:
The prestage must be handled carefully. In particular
the moving parts of the prestage should not be
touched when the protective cover is not in place.

6.1.1 Removal
☐ Open the prestage cover (43) attached with M4
screw (44). Unplug the prestage wire connector
on the spool sensor board. Unscrew the M4
screws (139, 2 pcs.) and lift up the prestage
module. Remove the O-ring (140).

6.1.2 Installation
☐ Place a new O-ring (140) into the groove on the
spool valve and press the prestage into place.
Make sure the nozzle is guided into the O-ring
properly. The screws guide the prestage body
into the correct position. Tighten the screws
(139) evenly.
☐ Push the prestage 2-pole wire connector into the
socket on the spool sensor board. The wire con-
nector may only be fitted in the correct position.
Replace the prestage cover (43) and tighten the
M4 screw (44).

6.2 Spool valve assembly
Before removing the spool valve assembly (193) the
prestage (120) must be removed. See 6.1.

6.2.1 Removal
☐ Unscrew the M4 screws (47, 3 pcs.), M3 screws
(48, 2 pcs.) and M3 screw (49). Remove the
spool valve assembly.
☐ The spool valve may be cleaned if special atten-
tion is paid to a clean environment and proper
procedure. After unscrewing the M4 screws (47,
3 pcs.) the spool valve may be lifted from the fix-
ture. Hold the ends of the body with your fingers
to avoid dropping the spool from the body. Clean
the spool and the bore of the body with care. Do
not leave any fibres from cleaning materials in
the bore or on the spool. Do not scratch the mat-
ing surfaces of the spool and body. The restrictor
is located under the spool valve in the fixture. It
may be cleaned when the spool valve is
removed.

NOTE:
Each spool valve body has an individual correspond-
ing spool which cannot be replaced by any other
spool. Never alter the orientation of the spool.
The orientation of the spool is marked on the spool
valve body, see Fig. 22.
6.2.2 Installation

- Ensure that the gasket (174) is properly located in the groove on the bottom of the spool valve assembly. Mount the spool valve assembly on to the housing and tighten the M3 and M4 screws evenly. Ensure the O-ring (140) slots inside the groove fully. Mount the prestage unit directly on to the spool valve unit as in 6.1.

6.3 Communication circuit board

6.3.1 Removal

- Loosen the M8 grub screw (110) off the position indicator (109) and turn the position indicator from the shaft. Remove the cover off the prestage (43). Remove the cover of the circuit boards attached with M3 screws (42, 4 pcs).
- Remove the M3 screws (217, 4 pcs.). Hold the sides of the circuit board and lift it directly upwards and outwards. Handle the board carefully, touching only the sides.

6.3.2 Installation

- Mount the new communication circuit board carefully.
- Locate the pins with the matching connector on the board. Tighten the M3 screws (217) evenly.
- Install the cover of the circuit boards and the cover of the prestage (43).
- Mount the position indicator (109) on the shaft and tighten the M8 screw (110) temporarily. The final orientation and locking of the position indicator should be done after installation of the valve controller to the actuator.
7.3 Errors

<table>
<thead>
<tr>
<th>Display message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRESTAGE CUT ERROR</td>
<td>Prestage wire is cut or connector is loose.</td>
</tr>
<tr>
<td>PRESSURE SENSOR 1 FAILURE</td>
<td>Actuator pressure sensor has failed. The device performance level is reduced. Change the ND9000 device to a new one during next maintenance activity.</td>
</tr>
<tr>
<td>PRESSURE SENSOR 2 FAILURE</td>
<td>Actuator pressure sensor has failed. The device performance level is reduced. Change the ND9000 device to a new one during next maintenance activity.</td>
</tr>
<tr>
<td>PRESSURE SENSOR 3 FAILURE</td>
<td>Supply pressure sensor has failed. This does not affect the performance level.</td>
</tr>
<tr>
<td>SPOOL VALVE SENSOR FAILURE</td>
<td>Spool valve sensor failed. Check the sensor connections. The device performance level is reduced. Change the ND9000 device to a new one during next maintenance activity.</td>
</tr>
<tr>
<td>TEMPERATURE SENSOR FAILURE</td>
<td>Temperature measurement failed. The accuracy of the measurements is reduced. Change the ND9000 device to a new one during next maintenance activity.</td>
</tr>
<tr>
<td>STATISTICS DATABASE ERROR</td>
<td>Failed to store statistics. New measurements will be lost.</td>
</tr>
<tr>
<td>EVENT DATABASE ERROR</td>
<td>Failed to store events. The new events will be lost.</td>
</tr>
<tr>
<td>POSITION CALIBRATION FAILED</td>
<td>Travel calibration failed. Check the configuration parameters and controller mounting. Check that the controller shaft is correctly aligned.</td>
</tr>
<tr>
<td>TUNING FAILED</td>
<td>Tuning procedure failed. Check that the valve is moving properly. Check the prestage and spool valve unit.</td>
</tr>
<tr>
<td>POSITION SENSOR RANGE ERROR</td>
<td>Position sensor range failed during calibration. Valve controller shaft failed to rotate minimum 45 degrees. Check the configuration parameters and controller mounting. Check that the controller shaft is correctly aligned.</td>
</tr>
<tr>
<td>CALIBRATION TIMEOUT</td>
<td>Calibration timeout occurred. Check configuration and installation.</td>
</tr>
<tr>
<td>CALIBRATION START FAILED</td>
<td>The calibration starting conditions are not met. Check the supply pressure.</td>
</tr>
<tr>
<td>TUNING RANGE ERROR</td>
<td>Tuning procedure failed. Check the prestage and spool valve unit.</td>
</tr>
<tr>
<td>SPOOL SENSOR RANGE ERROR</td>
<td>Spool sensor range failed during position calibration. Check the configuration parameters. Check the prestage and spool valve unit.</td>
</tr>
</tbody>
</table>

7.4 Warnings

<table>
<thead>
<tr>
<th>Display message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL OPERATION TIME WARNING</td>
<td>Operating time exceeded limit.</td>
</tr>
<tr>
<td>VALVE FULL STROKES WARNING</td>
<td>Valve stroke counter limit reached.</td>
</tr>
<tr>
<td>VALVE REVERSALS WARNING</td>
<td>Valve reversals counter limit reached.</td>
</tr>
<tr>
<td>ACTUATOR FULL STROKES WARNING</td>
<td>Actuator stroke counter limit reached.</td>
</tr>
<tr>
<td>ACTUATOR REVERSALS WARNING</td>
<td>Actuator stroke counter limit reached.</td>
</tr>
<tr>
<td>SPOOL FULL STROKES WARNING</td>
<td>Spool stroke counter limit reached.</td>
</tr>
<tr>
<td>SPOOL REVERSALS WARNING</td>
<td>Spool reversals counter limit reached.</td>
</tr>
<tr>
<td>STEADY STATE DEVIATION WARNING</td>
<td>Warning that steady state deviation has increased.</td>
</tr>
<tr>
<td>DYNAMIC STATE DEVIATION WARNING</td>
<td>Warning that dynamic state deviation has increased.</td>
</tr>
<tr>
<td>STICION LOW WARNING</td>
<td>Warning that stiction has exceeded the low limit.</td>
</tr>
<tr>
<td>STICION HIGH WARNING</td>
<td>Warning that stiction has exceeded the high limit.</td>
</tr>
<tr>
<td>LOAD FOR OPENING TOO LOW</td>
<td>Warning that load for opening has exceeded the low limit.</td>
</tr>
<tr>
<td>LOAD FOR OPENING TOO HIG</td>
<td>Warning that load for opening is has exceeded the high limit.</td>
</tr>
<tr>
<td>SUPPLY PRESSURE OUT OF LIMITS</td>
<td>Supply pressure has exceeded the specified operating conditions.</td>
</tr>
<tr>
<td>TEMPERATURE OUT OF LIMITS</td>
<td>Temperature has exceeded the specified operating conditions.</td>
</tr>
<tr>
<td>HUNTING DETECTION WARNING</td>
<td>Valve hunting detected. Change performance level to less aggressive to stabilize valve. Check that the spool valve capacity is suitable for the actuator.</td>
</tr>
<tr>
<td>REDUCED PERFORMANCE ACTIVATED</td>
<td>Valve controller performance is reduced due to defective spool valve sensor. Change the spool valve assembly.</td>
</tr>
<tr>
<td>TOO LOW SUPPLY PRESS FOR 1-ACT ACTUATOR</td>
<td>Too low supply pressure level for 1-acting actuator.</td>
</tr>
<tr>
<td>VALVE REVERSALS TREND WARNING</td>
<td>Warning that valve reversals per day has exceeded the limit.</td>
</tr>
<tr>
<td>SETPOINT REVERSALS TREND WARNING</td>
<td>Warning that setpoint reversals per day has exceeded the limit.</td>
</tr>
<tr>
<td>VALVE TRAVEL TREND WARNING</td>
<td>Warning that valve travel per day has exceeded the limit.</td>
</tr>
<tr>
<td>VALVE REVERSALS WH STABLE SETP WARNING</td>
<td>Warning that valve reversals while setpoint is stable, per day, has exceeded the limit.</td>
</tr>
</tbody>
</table>
7.5 Notifications

<table>
<thead>
<tr>
<th>Display message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALIBRATION SUCCESSFULL</td>
<td>Position calibration successfully performed.</td>
</tr>
<tr>
<td>TEST CANCELLED</td>
<td>Off-line test has been cancelled.</td>
</tr>
<tr>
<td>TEST DONE</td>
<td>Off-line test has been successfully performed.</td>
</tr>
<tr>
<td>TEST FAILED</td>
<td>Off-line test failed. Repeat the test sequence.</td>
</tr>
<tr>
<td>CALIBRATION CANCELLED</td>
<td>Calibration has been cancelled.</td>
</tr>
<tr>
<td>PARAMETERS BACKUP RESTORED</td>
<td>Parameter backup database has been activated.</td>
</tr>
<tr>
<td>PT NOT ACTIVATED</td>
<td>(Only with position transmitter option). The position transmitter is not energized.</td>
</tr>
<tr>
<td>1PT CAL FAILED</td>
<td>1-point calibration failed. Check the mounting of the valve controller. Verify input parameter (range) value. Check rotation parameter (ROT).</td>
</tr>
<tr>
<td>TUNE OK</td>
<td>Tuning has been successfully performed.</td>
</tr>
<tr>
<td>REDUCED PERFORMANCE DEACTIVATED</td>
<td>Spool valve measurement and normal valve control is recovered.</td>
</tr>
</tbody>
</table>

8 TROUBLE SHOOTING

Mechanical/electrical defects
1. A change in the valve position setpoint will not affect the position of the actuator
 - Supply pressure too low
 - Spool valve sticks
 - Incorrect configuration parameters
 - Actuator and/or valve jammed
 - Signal wires incorrectly connected, no value on display
 - Circuit boards are defective
 - Calibration and tuning has not been carried out
 - Device is in manual mode
 - Prestage is defective
 - Device is in fail-safe mode
2. The actuator goes to the end position with a small change of input signal
 - Tubes between controller and actuator are incorrect, see Fig. 6
 - The parameter settings \(PFR \) and \(ROT \) are incorrectly selected.
3. Inaccurate positioning
 - Spool valve dirty
 - Too high actuator load
 - Supply pressure too low
 - Spool or pressure sensors are defective
 - Actuator leakage
4. Overshooting or positioning too slow
 - Change \(PERF \) value
 - Spool valve dirty
 - Supply air tube too small or supply air filter dirty
 - Valve sticks
 - Check leakages in tubes between controller and actuator
 - Check leakages in mechanical stop screws
5. Error during valve travel calibration
 - Valve controller is in \(MAN \) mode
 - Check the coupling alignment with the pointer, see Fig. 5.
 - The parameter settings \(PFR \) and \(ROT \) are incorrectly selected
 - The actuator or valve did not move or was stuck during calibration
 - Supply pressure too low
 - Spool valve dirty
9 ND9100H/K00, ND9100H/I00 (WITH LIMIT SWITCHES)

9.1 Introduction

9.1.1 General description

ND9100H can be equipped with limit switches. ND9100H/K00 has 2 microswitches and ND9100H/I00 2 inductive proximity switches. Limit switches are used for electrical position indication of the valves and other devices. The switching points may be chosen freely.

9.1.2 Markings

The limit switch is provided with an identification plate sticker, see Fig. 26. Identification plate markings from top to bottom are:

- Type designation
- Electrical values
- Enclosure class
- Temperature range
- Conduit entry
- Serial number

The type designation is described in Chapter 15.

9.1.3 Technical specifications

9.1.3.1 ND9100H/K00

Microswitch type: OMRON D2VW-5 (05)
OMRON D2VW-01 (06)
(gold-plated contacts)
Protection class IP67
Resistive load: 3A: 250 V AC (05)
5A: 30 V DC
0.4A: 125 V DC
100 mA: 30 V DC/125 V AC (06)
Switch accuracy: < 2°
Number of switches: 2
Protection class of cover: IP66 (DIN 40050, IEC 60529)
Conduit entry: M20 x 1.5
Ambient temperature: -40° to +80 °C (-40° to +176 °F)
Weight: Approx. 0.8 kg (1.8 lbs)
(limit switches only)
Materials:
Body: Aluminium alloy, epoxy-coated
Internal parts: Stainless steel and polymer
Sealing: Nitrile and neoprene rubber

9.1.3.2 ND9100H/I00

Proximity switch: Inductive, diameter 8–14 mm (0.31–0.55 in)
Sensing range 2 mm (0.08 in)
Protection class IP67
P+F NJ2-12GK-SN (02)
P+F NJ2-12GM-N (07)
ifm IFC2002-ARKG/UP (56)
Other switch types on special order
Electrical values: According to switch type
Switch accuracy: < 1°
Number of switches: 2
Protection class of housing: IP66 (DIN 40050, IEC 60529)
Conduit entry: M20 x 1.5
NPT 1/2 = -CE1
R 1/2 = -CE3
Ambient temperature: -40° to +51 °C (-40° to +124 °F)(02)
-20° to +62 °C (-4° to +144 °F)(07)
-20° to +80 °C (4° to +176 °F)(56)
9.2 Installing ND9100H/K00 or ND9100H/I00 on a valve controller

The limit switch may be installed on an existing valve controller.

- If the valve controller is already mounted on an actuator/valve assembly, operate the actuator into the closed or open position.
- Remove the cover (100), the pointer (109), the LUI (223), the prestage cover (43) and electronics cover (39).
- Turn the shaft (311) onto the shaft (11). Fasten the screw (312) using a locking agent such as Loctite. Unfasten the screws (314) in the cam discs (313).
- Mount the electronics cover (39) and the housing (300) on the valve controller.
- ND9100/K00: Turn the cam discs (313) to avoid contact with the micro switches, if required.
- Mount the LUI (223) on the bed (306).
- Mount the pointer (109) on the shaft (311). Adjust the limit switch according to 9.4.

9.3 Electrical connections

Before connecting the power, make sure that the electrical specifications and the wiring meet the installation conditions. See the diagrams in 12.9. Refer to the information on the identification plate.

ND9100/I00: Observe the functioning of the proximity switch; activated when the active face is either covered or free.

9.4 Adjustment

The pointer (109) need not be removed for adjustment. When the limit switch is ordered together with the valve and the actuator, the valve controller switches are factory-adjusted. The limits may be adjusted by altering the position of the cam discs (313) on the shaft. The lower switch is activated at the closed limit and the upper switch at the open limit.

- With the actuator in the open or closed position, locate the switching point by turning the cam disc so that the switch state changes approx. 5°–6° before the limit.
- ND9100/I00: Use the LED indicator or a separate measuring instrument as an aid.
- After re-installation of the actuator, first adjust its mechanical limits according to the valve, then the valve controller, and finally the limit switch.
- When adjustment is completed, turn the pointer (109) so that the yellow line is parallel with the valve closure member.

9.5 Removal of the limit switches ND9100H/K00 and ND9100H/I00 for accessing the valve controller

- Remove the cover (100) and the pointer (109).
- Detach the cam discs (313).
- Remove the LUI cabling from the circuit board.
- Loosen the screws (303) and remove the housing (300).
- Remove the electronics cover (39).
- Proceed with the valve controller as applicable.
- Re-install the limit switch according to 9.2 and check the adjustment according to 9.4.

9.6 Circuit diagrams

The internal circuitry of the limit switch is shown in the connection diagrams in 12.9 and on the sticker inside the cover (ND9100H/K00 only).

9.7 Maintenance

Regular maintenance of the limit switch is not necessary.

10 TOOLS

No special tools required.

11 ORDERING SPARE PARTS

Spare parts are delivered as modules. The modules available are indicated in 12.1 and 12.2.

When ordering spare parts, always include the following information:

- Valve controller type designation and serial number from the ID plate
- The code of this manual, the part number, the part name and quantity required
12 DRAWINGS AND PARTS LISTS

12.1 Exploded view and parts list, ND9100H

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
<th>Description</th>
<th>Spare modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Housing</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>Exhaust cover</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>Screw</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>Shaft</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>O-ring</td>
<td>x</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>Washer</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>Wave spring</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>Bushing</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>Grounding screw</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>Electronics cover</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>4</td>
<td>Screw</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>1</td>
<td>Prestage cover</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>1</td>
<td>Screw</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>3</td>
<td>Screw</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>2</td>
<td>Screw</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>1</td>
<td>Screw</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>Cover</td>
<td>x</td>
</tr>
<tr>
<td>107</td>
<td>4</td>
<td>Screw</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>1</td>
<td>Pointer</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>1</td>
<td>Grub screw</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>1</td>
<td>Prestage unit</td>
<td>x</td>
</tr>
<tr>
<td>139</td>
<td>2</td>
<td>Screw</td>
<td></td>
</tr>
<tr>
<td>193</td>
<td>1</td>
<td>Spool valve assembly</td>
<td>x</td>
</tr>
<tr>
<td>210</td>
<td>1</td>
<td>Valve Controller board</td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>1</td>
<td>Communication circuit board</td>
<td>x</td>
</tr>
<tr>
<td>217</td>
<td>4</td>
<td>Screw</td>
<td></td>
</tr>
<tr>
<td>218</td>
<td>1</td>
<td>Support</td>
<td></td>
</tr>
<tr>
<td>219</td>
<td>2</td>
<td>Screw</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>2</td>
<td>Threaded spacer</td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>3</td>
<td>O-ring</td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>1</td>
<td>Isolation part</td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>1</td>
<td>Local user interface (LUI)</td>
<td>x</td>
</tr>
<tr>
<td>228</td>
<td>2</td>
<td>Screw</td>
<td></td>
</tr>
</tbody>
</table>

*) Mounting parts: coupling (12), screws (14)
12.2 Exploded view and parts list, ND9100H/K00 and ND9100H/I00

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>1</td>
<td>Grounding screw</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>Cover</td>
</tr>
<tr>
<td>107</td>
<td>4</td>
<td>Screw</td>
</tr>
<tr>
<td>109</td>
<td>1</td>
<td>Pointer</td>
</tr>
<tr>
<td>110</td>
<td>1</td>
<td>Screw</td>
</tr>
<tr>
<td>223</td>
<td>1</td>
<td>Local user interface (LUI)</td>
</tr>
<tr>
<td>300</td>
<td>1</td>
<td>Housing</td>
</tr>
<tr>
<td>301</td>
<td>1</td>
<td>Gasket</td>
</tr>
<tr>
<td>302</td>
<td>1</td>
<td>Screw</td>
</tr>
<tr>
<td>303</td>
<td>4</td>
<td>Screw</td>
</tr>
<tr>
<td>304</td>
<td>1</td>
<td>Bracket</td>
</tr>
<tr>
<td>305</td>
<td>2</td>
<td>Screw</td>
</tr>
<tr>
<td>306</td>
<td>1</td>
<td>Bed of Local User Interface (LUI)</td>
</tr>
<tr>
<td>307</td>
<td>3</td>
<td>Screw</td>
</tr>
<tr>
<td>308</td>
<td>2</td>
<td>Screw</td>
</tr>
<tr>
<td>311</td>
<td>1</td>
<td>Shaft</td>
</tr>
<tr>
<td>312</td>
<td>2</td>
<td>Screw</td>
</tr>
<tr>
<td>313</td>
<td>2</td>
<td>Cam disc</td>
</tr>
<tr>
<td>314</td>
<td>2</td>
<td>Screw</td>
</tr>
<tr>
<td>315</td>
<td>6</td>
<td>Terminal block</td>
</tr>
<tr>
<td>346</td>
<td>1</td>
<td>Bushing (I00)</td>
</tr>
<tr>
<td>347</td>
<td>2</td>
<td>Inductive proximity sensor (I00)</td>
</tr>
<tr>
<td>348</td>
<td>1</td>
<td>Fastening plate</td>
</tr>
<tr>
<td>349</td>
<td>2</td>
<td>Screw</td>
</tr>
<tr>
<td>350</td>
<td>1</td>
<td>Washer</td>
</tr>
<tr>
<td>351</td>
<td>1</td>
<td>Screw</td>
</tr>
<tr>
<td>355</td>
<td>2</td>
<td>Microswitch (K00)</td>
</tr>
<tr>
<td>357</td>
<td>2</td>
<td>Spring washer (K00)</td>
</tr>
<tr>
<td>358</td>
<td>2</td>
<td>Screw (K00)</td>
</tr>
</tbody>
</table>
12.3 Mounting parts for EC05-14/EJ05-14 actuators, rising signal opens valve

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>Screw</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>Coupling</td>
</tr>
<tr>
<td>27</td>
<td>2</td>
<td>Screw</td>
</tr>
<tr>
<td>38</td>
<td>2</td>
<td>O-ring</td>
</tr>
<tr>
<td>47</td>
<td>1</td>
<td>Coupler socket</td>
</tr>
<tr>
<td>48</td>
<td>2</td>
<td>Screw</td>
</tr>
<tr>
<td>49</td>
<td>1</td>
<td>O-ring</td>
</tr>
<tr>
<td>53</td>
<td>2</td>
<td>Plug</td>
</tr>
<tr>
<td>54</td>
<td>1</td>
<td>Plug (EJ only)</td>
</tr>
</tbody>
</table>

12.4 Mounting parts for B1C/B1J6-20 actuators

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Mounting bracket</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Ear</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Washer</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Screw</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>Screw</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>Couplings jacket</td>
</tr>
<tr>
<td>47</td>
<td>1</td>
<td>Coupler socket</td>
</tr>
<tr>
<td>48</td>
<td>2</td>
<td>Screw</td>
</tr>
<tr>
<td>53</td>
<td>1</td>
<td>Plug (BJ actuators only)</td>
</tr>
<tr>
<td>54</td>
<td>2</td>
<td>Plug</td>
</tr>
</tbody>
</table>

Item Qty Description
- Item 1 Qty 1 Description Mounting bracket
- Item 2 Qty 1 Description Ear
- Item 3 Qty 4 Description Washer
- Item 4 Qty 4 Description Screw
- Item 29 Qty 1 Description Screw
- Item 36 Qty 1 Description Couplings jacket
- Item 47 Qty 1 Description Coupler socket
- Item 48 Qty 2 Description Screw
- Item 53 Qty 1 Description Plug (BJ actuators only)
- Item 54 Qty 2 Description Plug

Attachment Face
- Neles attachment face
- VDI/VDE 3845 attachment face

Diagram
- E_05 - 14
- ND9100
- B_U6-20
- B_U26...S02
- B_8-20
12.5 Mounting parts for B1C/B1J25-50, B1C502 and B1J322 actuators

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Mounting bracket</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Draught piece</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Washer</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Screw</td>
</tr>
<tr>
<td>27</td>
<td>4</td>
<td>Washer</td>
</tr>
<tr>
<td>28</td>
<td>4</td>
<td>Screw</td>
</tr>
<tr>
<td>47</td>
<td>1</td>
<td>Coupler socket</td>
</tr>
<tr>
<td>48</td>
<td>2</td>
<td>Screw</td>
</tr>
<tr>
<td>53</td>
<td>1</td>
<td>Plug (BJ actuators only)</td>
</tr>
<tr>
<td>54</td>
<td>2</td>
<td>Plug</td>
</tr>
</tbody>
</table>

12.6 Mounting parts for Quadra-Powr® actuators

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Mounting bracket</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Ear</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Screw</td>
</tr>
<tr>
<td>28</td>
<td>4</td>
<td>Screw</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>Screw</td>
</tr>
<tr>
<td>30</td>
<td>4</td>
<td>Screw</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>Adapter plug (QP II 1/S- 6/S only)</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>Adapter plate (QP II 2B/K thr. 6_/K)</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>Couplings jacket</td>
</tr>
<tr>
<td>47</td>
<td>1</td>
<td>Coupler socket</td>
</tr>
<tr>
<td>48</td>
<td>2</td>
<td>Screw</td>
</tr>
<tr>
<td>53</td>
<td>1</td>
<td>Plug</td>
</tr>
<tr>
<td>54</td>
<td>2</td>
<td>Plug</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Mounting bracket</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Coupling half</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Adapter</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Screw</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>Hex nut</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>Screw</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>Screw</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>Washer</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>Screw</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>Washer</td>
</tr>
<tr>
<td>47</td>
<td>1</td>
<td>Coupler socket</td>
</tr>
<tr>
<td>48</td>
<td>2</td>
<td>Screw</td>
</tr>
<tr>
<td>53</td>
<td>1</td>
<td>Plug</td>
</tr>
<tr>
<td>54</td>
<td>2</td>
<td>Plug</td>
</tr>
</tbody>
</table>
12.7 Mounting parts for linear actuators of nelesCV Globe

Set conical plug to the scale according to the stroke

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Washer</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>Screw</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>Conical plug</td>
</tr>
<tr>
<td>28</td>
<td>4</td>
<td>Screw</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>O-ring</td>
</tr>
<tr>
<td>38</td>
<td>2</td>
<td>O-ring</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>Mounting plate</td>
</tr>
<tr>
<td>47</td>
<td>1</td>
<td>Feedback lever</td>
</tr>
<tr>
<td>48</td>
<td>4</td>
<td>Screw</td>
</tr>
<tr>
<td>53</td>
<td>2</td>
<td>Plug</td>
</tr>
<tr>
<td>54</td>
<td>1</td>
<td>Plug</td>
</tr>
</tbody>
</table>
12.8 Mounting parts for linear actuators with IEC 60534 mounting face

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Bracket</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Feedback lever</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Filling piece</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>Clearance remove spring</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>Cross rec head screw</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>Washer</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>Hexagon screw</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>Washer</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>Hexagon screw</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>Spring washer</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>Hexagon nut</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>Clamp</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>Fixing plate</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>Special screw</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>Hexagon nut</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>Washer</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>Hexagon screw</td>
</tr>
<tr>
<td>54</td>
<td>2</td>
<td>Plug</td>
</tr>
</tbody>
</table>

- **Stroke**: 10 - 120 mm
- **Feedback lever in horizontal position at mid travel of stroke.**
- **Allowed travel range**: 45–90°
12.9 Connection diagrams

12.9.1 ND9100H/K05 and ND9100H/K06

Connection diagram shows limitswitch when actuator is in intermediate position. Switch A (upper) is activated at the open limit of the travel and switch K (lower) at the closed limit.

Electrical characteristics:

OMRON D2VW-5 (K05):
5 A - 30 V DC, 0.4 A - 125 V DC,
3 A - 250 V AC

OMRON D2VW-01, gold-plated contacts (K06):
100 mA - 30 V DC / 125 V AC

Ambient temperature -40 °C ... +80 °C / -40° ... +176 °F
Factory adjustment:
Active faces of proximity switches are covered when the actuator is in intermediate position.
Active face A (upper switch) becomes free at open limit of travel and face K (lower switch) at closed limit.

The function can be inverted on site by re-adjusting the cam discs.

Sensing distance 2...4 mm, depending on type of switch
Supply voltage 8 V DC (Ri 1 kΩ)
Current consumption
 - active face free, > 3 mA
 - active face covered, < 1 mA

PROXIMITY SWITCH
Intrinsically safe II 2 G EEx ia IIC T6.
According to CENELEC EN50014 and EN50020.

Voltage (Umax), current (Imax), inductance (Li) and capacitance (Ci) according to certificate of switch, see table.

<table>
<thead>
<tr>
<th>Type of proximity switch</th>
<th>Electrical values</th>
<th>Ex classification</th>
<th>Certificate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Umax (V)</td>
<td>Imax (mA)</td>
<td>Li (µH)</td>
</tr>
<tr>
<td>02 P+F NJ2-12GK-SN</td>
<td>16</td>
<td>52</td>
<td>150</td>
</tr>
<tr>
<td>07 P+F NJ2-12GM-N</td>
<td>16</td>
<td>52</td>
<td>50</td>
</tr>
</tbody>
</table>
Factory adjustment:
Active faces of proximity switches are free when the actuator is in the intermediate position. Active face A (upper switch) becomes covered at the open limit of the travel and face K (lower switch) at the closed limit.

The function may be inverted on site by re-adjusting the cam discs.

Connections: Either wire can be connected to + or -.

PROXIMITY SWITCH
ifm electronic IFC2002-ARKG/UP
2-wire type
Sensing distance 2 mm
Rated voltage $U = 10 - 36 \, V \, DC$
Output current $< 150 \, mA$
 active face covered, LED on
Quiescent current $< 0.6 \, mA$
 active face free
Ambient temperature $-20^\circ \ldots +80^\circ \, C / -13^\circ \ldots +176^\circ \, F$
12.9.4 Control drawing

HC100H_T

ND9100H_T

NONHAZARDOUS LOCATION

HAZARDOUS LOCATION

Class I, Division 1 and 2, Groups A, B, C, D
Class I, Zone 0, AEX ia, Group IIIB/IIC T4/ T5/T6
T4: Ta = -40...80 °C
T5: Ta = -40...65 °C
T6: Ta = -40...50 °C

FM Notes:
1. The Intrinsic Safety Entity concept allows the interconnection of two Intrinsically safe devices Approved by FM Approvals with entity parameters not specifically examined in combination as a system when:
 Uo or Voc or Vt ≤ Vmax, Io or Isc or It ≤ Imax, Ca or Co ≥ Ci + Ccable, La or Lo ≥ Li + Lcable, Po ≤ Pi.
2. Dust-tight conduit seal must be used when installed in Class II and Class III environments.
3. Control equipment connected to the Associated Apparatus must not use or generate more than 250 Vrms or Vdc.
4. Installation should be in accordance with ANSI/ISA RP12.06.01“Installation of Intrinsically Safe Systems for Hazardous (Classified) Locations” and the National Electrical Code® (ANSI/NFPA 70) Sections 504 and 505.
5. The configuration of associated Apparatus must be FM Approved under Entity Concept.
6. Associated Apparatus manufacturers installation drawing must be followed when installing this equipment.
7. No revision to drawing without prior Approval by FM Approvals.
8. The enclosure must be bonded.
9. Nonincendive wiring concept: The Nonincendive wiring concept allows the interconnection of devices with Nonincendive wiring parameters: Vmax = 30V, Ci =22 nF, Li =53 µH
10. Nonincendive wiring parameters: Voc or Vt ≤ Vmax, Ca or Co ≥ Ci + Ccable, La or Lo ≥ Li + Lcable.
11. The configuration of Associated Nonincendive Field Wiring Apparatus must be FM Approved under Nonincendive wiring concept.
12. Associated Nonincendive Field Wiring Apparatus manufacturers installation drawing must be followed when installing this equipment.
EC DECLARATION OF CONFORMITY

Manufacturer:
Metso Automation Oy
00811 Helsinki
Finland

Product: Intelligent Valve Controller Neles ND 9000-series

Approvals:

<table>
<thead>
<tr>
<th>Type</th>
<th>Approval</th>
<th>EC Type examination Certificate</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND 9...PA (Profibus PA)</td>
<td>(EMC 2004/108/EC) EN61000-6-2(2001)</td>
<td>NEMKO 101425 & NEMKO 1052749</td>
</tr>
<tr>
<td>ND9...F (Foundation Fieldbus)</td>
<td>(EMC 2004/108/EC) EN61000-6-2(2001)</td>
<td>(Same HW as ND9...PA)</td>
</tr>
<tr>
<td>ND9...HNT (Hart)</td>
<td>(EMC 2004/108/EC) EN61000-6-3(2001) EN61000-6-2(2001)</td>
<td>NEMKO 56164 & NEMKO 80628</td>
</tr>
<tr>
<td>ND910.HX1 and ND910.HX2</td>
<td>ATEX II 1 GD or II 2 GD EEx ia IIC T4...T6</td>
<td>KEMA 03ATEX1023X</td>
</tr>
<tr>
<td>ND910.FX1 and ND910.FX2</td>
<td>ATEX II 2 G Ex d IIC T4...T6</td>
<td>KEMA 04ATEX2098X, Issue Number: 2</td>
</tr>
<tr>
<td>ND910.PX1 and ND910.PX2</td>
<td>ATEX II 3 GD Ex nA II T4...T6 or EEx n IIC T4...T6</td>
<td>KEMA 03ATEX1024X</td>
</tr>
<tr>
<td>ND910.HX3</td>
<td>ATEX II 2 G Ex d IIC T4...T6</td>
<td>KEMA 04ATEX2098X, Issue Number: 2</td>
</tr>
<tr>
<td>ND910.FX3 and ND910.FX4</td>
<td>ATEX II 2 G Ex d IIC T4...T6</td>
<td>KEMA 04ATEX2098X, Issue Number: 2</td>
</tr>
<tr>
<td>ND910.PX3 and ND910.PX4</td>
<td>ATEX II 2 G Ex d IIC T4...T6</td>
<td>KEMA 04ATEX2098X, Issue Number: 2</td>
</tr>
<tr>
<td>ND920..E1.</td>
<td>ATEX II 2 G Ex d IIC T4...T6</td>
<td>KEMA 04ATEX2098X, Issue Number: 2</td>
</tr>
</tbody>
</table>

Applicable directives:
- EMC 2004/108/EC
- ATEX 94/9/EC

As the products within our sole responsibility of design and manufacture may be used as parts or components in machinery and are not alone preforming functions as described in Article 6(2) in the Machinery Directive (2006/42/EC), we declare that our product(s) to which this Declaration of Conformity relates must NOT be put into service until the relevant machinery into which it is to be incorporated has been declared in conformity with the provisions of the Machinery Directive.

The product above is manufactured in compliance with the applicable European directives and technical specifications/standards.

Protection from e.g. static electricity caused by the process or connected equipment must be considered by the user (EN 60079-14 §6).

The product do not possess any residual risk according to hazard analyses made under the applicable directives providing that the procedures stated by the installation, Operation and Maintenance manual are followed and the product is used under conditions mentioned in the technical specifications.

Manufacturer's certificates:
- ISO 9001:2000
- ATEX 94/9/EC Annex IV

Helsinki 8 February 2008

Ralf Liljestrand, Quality Manager
Authorized person of the manufacturer within the European Community
15 TYPE CODING

INTELLIGENT VALVE CONTROLLER ND9100H

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ND</td>
<td>Intellig...</td>
<td>Standard IP66 / NEMA 4X enclosure</td>
<td>Low capacity: Stroke volume of actuator < 1 dm³</td>
<td>4–20 mA, HART communication. Supply voltage 30 V DC. Load voltage: up to 9.5 V DC at 20 mA corresponding to 475 Ω (maximum voltage drop).</td>
<td>- No approvals for hazardous areas. M20 x 1.5 conduit entry. Temperature range -40° to +85 °C (-40° to +185 °F).</td>
<td>- ND9_H.T only: Internal 2-wire (passive) position transmitter. Analogue position feedback signal, output 4–20 mA, supply voltage 12–30 V DC, external load resistance 0–780 Ω.</td>
<td>- Inductive proximity switches, 2 pcs.</td>
<td>- Special construction, to be specified.</td>
</tr>
<tr>
<td></td>
<td>Valve Contr...</td>
<td></td>
<td>Medium capacity: Stroke volume of actuator 1...3 dm³</td>
<td></td>
<td>ATEX certifications: - II 1 GD, Ex ia IIC T4...T6 190 °C (EN 50014, EN 50020, EN 50284, EN 50281-1).</td>
<td>- ND9_H.T1: Ui ≤ 30 V, Pmax = device limits itself, Li = 53 µH, Ci = 22 nF.</td>
<td>- P+F; NCB2-12GM35-N0, 2-wire type, DC; > 3 mA; < 1 mA. Intrinsically safe according to ATEX II 2 G Ex ia IIC T6.</td>
<td>- Special construction, to be specified.</td>
</tr>
<tr>
<td></td>
<td>ol 9 Series...</td>
<td></td>
<td>High capacity: Stroke volume of actuator > 3 dm³</td>
<td></td>
<td>ND9_H.T2: X1: Ui ≤ 22 V, Li ≤ 120 mA, Pi ≤ 1 W, Li = 53 µH, Ci = 22 nF.</td>
<td>- No approvals for hazardous areas. M20 x 1.5 conduit entry. Temperature range -40° to +85 °C (-40° to +185 °F).</td>
<td>- P+F; NCB2-12GM35-N0, 2-wire type, DC; > 3 mA; < 1 mA. Intrinsically safe according to ATEX II 2 G Ex ia IIC T6.</td>
<td>- Special construction, to be specified.</td>
</tr>
</tbody>
</table>

ND9100H WITH LIMIT SWITCH ND9100HIK00 OR ND9100HI00

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ND</td>
<td>Intellig...</td>
<td>Standard IP66 / NEMA 4X enclosure</td>
<td>Low capacity: Stroke volume of actuator < 1 dm³</td>
<td>4–20 mA, HART communication. Supply voltage 30 V DC. Load voltage: up to 9.5 V DC at 20 mA corresponding to 475 Ω (maximum voltage drop).</td>
<td>- No approvals for hazardous areas. M20 x 1.5 conduit entry. Temperature range -40° to +85 °C (-40° to +185 °F).</td>
<td>- ND9_H.T only: Internal 2-wire (passive) position transmitter. Analogue position feedback signal, output 4–20 mA, supply voltage 12–30 V DC, external load resistance 0–780 Ω.</td>
<td>- Inductive proximity switches, 2 pcs.</td>
<td>- Special construction, to be specified.</td>
</tr>
</tbody>
</table>